Polymer Thin Film of Phthalic Anhydride via Plasma Polymerization

플라즈마 중합에 의한 프탈릭 안하이드라이드 고분자 박막 필름 제조 연구

  • Kang, Hyun Min (Department of Materials Science and Engineering Gwangju Institute of Science and Technology) ;
  • Basarir, Fevzian (Department of Materials Science and Engineering Gwangju Institute of Science and Technology) ;
  • Paek, Kwan Yeol (Department of Materials Science and Engineering Gwangju Institute of Science and Technology) ;
  • Yoon, Tae-Ho (Department of Materials Science and Engineering Gwangju Institute of Science and Technology)
  • 강현민 (광주과학기술원 신소재공학과) ;
  • ;
  • 백관열 (광주과학기술원 신소재공학과) ;
  • 윤태호 (광주과학기술원 신소재공학과)
  • Received : 2009.02.23
  • Accepted : 2009.03.20
  • Published : 2009.03.30

Abstract

Polymer thin films were prepared by radio frequency (RF) plasma polymerization of phthalic anhydride (PA). First, monomer vaporization temperature ($100{\sim}160^{\circ}C$) was optimized by evaluating the thermal properties of thin films using differential scanning calorimeter (DSC) and measuring the root-mean-square (RMS) roughness with atomic force microscope (AFM) at the fixed plasma power of 10 W and time of 5 min in a continuous-wave (CW) mode. Plasma power (5~20 W) was then optimized by measuring the film solubility in solvents such as toluene, acetone, dimethylsulfoxide (DMSO) and 1 methylpyrrolidine (NMP). Next, pulsed mode plasma polymerization was also studied by varying the duty cycle of on-time (5, 20%) under optimized conditions of continuous-wave (CW) mode ($120^{\circ}C$, 10 W) in order to increase the anhydride functional groups. Finally, polymer thin films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analyzer (TGA) and ${\alpha}$-step.

Keywords

References

  1. F. F. Shi, Surf. Coat. Technol., 82, 1 (1996). https://doi.org/10.1016/0257-8972(95)02621-5
  2. R. d'Agostino, Plasma Deposition, Treatment, and Etching of Polymers, London: Academic Press (1990).
  3. H. M. Kang, N. I. Kim, and T. H. Yoon, J. Adhesion Sci. Technol., 16, 1809 (2002). https://doi.org/10.1163/156856102320396157
  4. J. H. Roh, J. H. Lee, and T. H. Yoon, J. Adhesion Sci. Technol., 16, 1529 (2002). https://doi.org/10.1163/156856102320252958
  5. Y. Lin and H. Yasuda, J. Appl. Polym. Sci., 60, 543 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960425)60:4<543::AID-APP8>3.0.CO;2-O
  6. L. M. Han, R. B. Timmons, and W. W. Lee, J. Vac. Sci. Technol. B, 18, 799 (2000). https://doi.org/10.1116/1.591279
  7. H. G. P. Lewis, D. J. Edell, and K. K. Gleason, Chem. Mater., 12, 3488 (2000). https://doi.org/10.1021/cm0003370
  8. M. E. Ryan, A. M. Hynes, and J. P. S. Badyal, Chem. Mater., 8, 37 (1996). https://doi.org/10.1021/cm9503691
  9. D. Beyer, W. Knoll, H. Ringsdorf, G. Elender, and E. Sackman, Thin Solid Films, 284, 825 (1996). https://doi.org/10.1016/S0040-6090(95)08456-8
  10. J. M. D. Gooijer, A. D. Haan, M. Scheltus, L. S. Vondervoort, and C. Koning, C. Polymer, 40, 6493 (1999). https://doi.org/10.1016/S0032-3861(99)00009-9
  11. S. A. Evenson, C. A. Fail, and J. P. S. Badyal, Chem. Mater., 12, 3083 (2000).
  12. S. Schiller, J. Hu, A. T. A. Jenkins, R. B. Timmons, F. S. Sanchez-Estrada, W. Knoll, and R. Forch, Chem. Mater., 14, 235 (2002). https://doi.org/10.1021/cm011139r
  13. N. M. Mackie, N. F. Dalleska, D. G. Castner, and E. R. Fisher, Chem. Mater., 9, 349 (1997). https://doi.org/10.1021/cm960388q
  14. C. J. Ahn and T. H. Yoon, J. of Adhesion & Interface, 7, 23 (2006).