High Breakdown-Voltage AlGaN/GaN High Electron Mobility Transistor having a Trapezoidal Gate Structure

사다리꼴 게이트 구조를 갖는 고내압 AlGaN/GaN HEMT

  • Kim, Jae-Moo (School of Electrical Engineering., Korea University) ;
  • Kim, Su-Jin (School of Electrical Engineering., Korea University) ;
  • Kim, Dong-Ho (School of Electrical Engineering., Korea University) ;
  • Jung, Kang-MIn (School of Electrical Engineering., Korea University) ;
  • Choi, Hong-Goo (Electronic Materials & Devices Packing Research Center., Korea Electronics Technology Institute) ;
  • Hahn, Cheol-Koo (Electronic Materials & Devices Packing Research Center., Korea Electronics Technology Institute) ;
  • Kim, Tae-Geun (School of Electrical Engineering., Korea University)
  • 김재무 (고려대학교 전자전기공학과) ;
  • 김수진 (고려대학교 전자전기공학과) ;
  • 김동호 (고려대학교 전자전기공학과) ;
  • 정강민 (고려대학교 전자전기공학과) ;
  • 최홍구 (한국전자부품연구원 전자소재패키징연구센터) ;
  • 한철구 (한국전자부품연구원 전자소재패키징연구센터) ;
  • 김태근 (고려대학교 전자전기공학과)
  • Published : 2009.04.25

Abstract

We propose a trapezoidal gate AlGaN/GaN high electron mobility transistor(HEMT) to improve the breakdown voltage characteristics and its feasibility is investigated by two-dimensional device simulations. The use of a trapezoidal gate structure appears to be quite effective in dispersing the electric fields concentrated near the gate edge on the drain side from the simulation result. We find that a peak value of the electric field along the 2-DEG channel is reduced by 30%, from 4.8 to 3.5 MV/cm and thereby, the breakdown voltage(Vbr) of the proposed AlGaN/GaN HEMT is increased by about 40%, from 49 to 69 V, compared to those of the standard AlGaN/GaN HEMT.

본 논문에서는 항복 전압 특성을 향상시키기 위한 사다리꼴 게이트 구조의 AlGaN/GaN HEMT구조를 제안하였으며 그 실현 가능성을 2차원 소자 시뮬레이터를 통해 조사하였다. 사다리꼴 게이트 구조의 사용으로 드레인 방향의 게이트 모서리 부근에서 나타나는 전계의 집중을 효과적으로 분산되는 것이 시뮬레이션 결과에서 확인 되었다. 제안된 사다리꼴 게이트 AlGaN/GaN HEMT 소자 구조에서 2DEG 채널을 따라 형성되는 전계의 피크값은 4.8 MV/cm 에서 3.5 MV/cm 로 기존 구조의 AlGaN/GaN HEMT에 비해 30% 가량 감소하였으며, 그 결과로 인해 항복 전압은 49 V 에서 69 V 로 40 % 가량 증가하였다.

Keywords

References

  1. S. Russo, A D. Carlo, "Influence of the Source-Gate Distance on the AlGaN/GaN HEMT Performance.", IEEE Transactions on Electron Devices, Vol. 54, No.5, pp.1071-1075, May., 2007 https://doi.org/10.1109/TED.2007.894614
  2. H. Xing, Y. Dora, A Chini, S. Heikman, S. Keller, U.K Mishra, "High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field-plates", IEEE Elctron Device Lett., vol. 25, p. 161-163, 2004 https://doi.org/10.1109/LED.2004.824845
  3. W. Saito, M. Kuraguchi, Y. Takada, K Tsuda, I. Omura, T. Ogura, "Design optimization of high breakdown voltage AlGaN-GaN power HEMT on an insulating substrate for RONA-VB tradeoff characteristics", IEEE Trans. on Electron Device, vol. 52, p. 106-111, 2005 https://doi.org/10.1109/TED.2004.841338
  4. S. Kim and K Yang, "Enhanced Breakdown Characteristic of AlGaN/GaN HEMTs Using a Gate;Drain Double Field-Plate Structure", Extended Abstracts of the 2005 Int. Conf. on SSDM, p. 208-209, 2005
  5. Device simulation software Atlas, Atlas User's Manual, Silcvaco international (2007)
  6. A F. M. Answer and Elias W. Faraclas, "AlGaN/GaN HEMTs: Experiment and simulation of DC characteristics," Solid-State Electronics, Vol. 50, 1998, pp. 1051-1056 https://doi.org/10.1016/j.sse.2006.04.014
  7. S. Selberherr, "Analysis and Simulation of Semiconductor Devices", Springer-Verlag, Wien-New York. 1984
  8. AF.M. Anwar, Elias W. Faraclas, "Schottky barrier height in GaN/ AlGaN heterostructures," Solid-State Electronics, Vol. 50, 2006, pp. 1041-1045 https://doi.org/10.1016/j.sse.2006.04.011
  9. E. T. Yu and M.O. Manasreh, III-V Nitride Semiconductors: Applications & Devices (Taylor & Francs, New York, 2003)
  10. Vassil Palankovski and Rudiger Quay, Analysis and Simulation of Heterostruchrre Devices (Springer, Wein New York, 2004)
  11. R. Gaska, Q. Chen, J. Yang, A Osinsky, M. Asif Khan, and M. S. Shur, "High Temperahrre Performance of AlGaN/GaN HEMT's on SiC Substrates," IEEE ELECTRON DEVICE LETTERS, Vol. 18, 1997
  12. AF.M. Anwar, Elias W. Faraclas, "Schottky barrier height in GaN/ AlGaN heterostruchrres," Solid-State Electronics, Vol. 50, 2006, pp. 1041-1045 https://doi.org/10.1016/j.sse.2006.04.011