DOI QR코드

DOI QR Code

발전기 스케줄링과 부하 전압민감도를 고려한 순간전압강하 평가 프로그램 개발

Development of a Voltage Sag Assessment Program Considering Generator Scheduling and Voltage Tolerance

  • 박창현 (부경대학교 전기제어공학부)
  • 발행 : 2009.04.30

초록

본 논문은 순간전압강하 추계적 평가를 위한 윈도우즈 프로그램을 소개한다. 개발된 프로그램을 통해 발전기 운전 스케줄링, 시변 사고율 및 부하 전압 민감도 특성을 고려한 순간전압강하 평가가 가능하다. 고장 계산, 취약지역계산, 순간전압강하 발생 횟수 추산 등 다양한 분석 기능들을 가지고 있으며 컴퓨터 그래픽과 애니메이션을 이용한 효과적인 데이터 시각화 기능도 제공하고 있다. 본 논문에서는 순간전압강하 평가의 개념과 발전기 스케줄링 및 시변 사고율을 고려한 순간전압강하 평가 방법에 대한 내용도 기술한다. 또한 개발된 프로그램을 이용한 사례 연구를 통해 순간전압강하 평가에 있어서의 발전기 운전 스케줄링 및 시변 사고율의 영향을 파악한다.

This paper presents a voltage sag assessment program. The program provides various functions for stochastic assessment of voltage sags such as short-circuit analysis, the determination of the area of vulnerability and the calculation of expected sag frequency(ESF). Effective data visualization functions based on computer graphics and animation were also implemented in the developed program. In this paper, the concept of voltage sag assessment and the assessment method considering generator scheduling and time-varying fault rates are presented. The influence of generator scheduling and time-varying fault rates on voltage sag prediction is also described by performing case studies using the developed program.

키워드

참고문헌

  1. IEEE Std 1159-1995, IEEE Recommended Practice for Monitoring Electric Power Quality(ANSI)
  2. M. H. J. Bollen, Understanding Power Quality Problems:Voltage Sags and Interruptions, Piscataway, NJ, 2000,IEEE Power Engineering Series
  3. M. R. Qader, M. H. J. Bollen, and R. N. Allan, "Stochasticprediction of voltage sags in a large transmission system," IEEE Trans. Ind. Appl., Vol.35, No.1, pp.152-162, 1999 https://doi.org/10.1109/28.740859
  4. C. H. Park and G. Jang, "Stochastic estimation of voltagesags in a large meshed network," IEEE Trans. PowerDeliv., Vol.22, No.3, pp. 1655- 1664, 2007 https://doi.org/10.1109/TPWRD.2006.886795
  5. T. Thasananutariya and S. Chatratana, and R. N. Allan,"Stochastic prediction of voltage sags in an industrial estate," Industry Applications Conference, 2005. Fourtieth AS Annual Meeting. Conference Record of the 2005,Vol.2, Iss., 2-6, 2005 https://doi.org/10.1109/IAS.2005.1518556
  6. R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W.Beaty, Electrical Power Systems Quality. New York:McGraw-Hill, 2002, ch.3
  7. J. V. Milanovic, and C. P. Gupta, "Probabilisticassessment of financial losses due to interruptions and voltage sags-part I: the methodology," IEEE Trans. Power Deliv., Vol.21, No.2, pp. 918-924, 2006 https://doi.org/10.1109/TPWRD.2006.870988
  8. C. H. Park, G. Jang, and R. Thomas, "The influence ofgenerator scheduling and time-varying fault rates onvoltage sag prediction," IEEE Trans. Power Deliv. Vol.23,No.2, pp. 1243- 1250, 2008 https://doi.org/10.1109/TPWRD.2008.915836
  9. M. T. Aung, J. V. Milanovic, and C. P. Gupta,"Propagation of asymmetrical sags and the influence of boundary crossing lines on voltage sag prediction," IEEETrans. Power Deliv., Vol.19, No.4, pp. 1819-1827, 2004 https://doi.org/10.1109/TPWRD.2004.835427
  10. J. Wang, S. Chen, and T. T. Lie, "System voltage sagperformance estimation," IEEE Trans. Power Deliv.,Vol.20, No.2, pp. 1738- 1747, 2005 https://doi.org/10.1109/TPWRD.2004.834341
  11. C. H. Park, G. Jang, C. H. Kim, and J. C. Kim,"Development of a user-friendly application for voltagesag analysis," Journal of Electrical Engineering &Technology, Vol.1, No.2, pp. 145-152, 2006 https://doi.org/10.5370/JEET.2006.1.2.145
  12. IEEE 30-bus Test Case, [Online]. Available: http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm