초록
국내외적으로 지역통계에 관한 관심이 높아지고 있으며 이와 관련하여 소지역 추정에 관한 많은 연구가 진행되고 있다. 소지역 추정에 사용되는 추정량의 대부분은 MSE(moan squared error)를 최소화하여 얻어진다 (Rao, 2003). 최근 황희진과 신기일 (2008)은 MSPE(mean squared percentage error)를 최소화하는 추정량을 사용한 소지역 추정법을 제안하였다. 본 논문에서는 노동통계 중 지청별 일인당 평균 임금총액 추정에 황희진과 신기일 (2008)이 제안한 방법을 적용하여 보았으며 2007년 매월 노동통계 자료를 이용하여 기존의 MSE를 최소화 하여 얻어진 여러 추정량과 우수성을 비교해 보았다. 또한 노동통계를 위 한 소지역 추정의 실제 사용 가능성을 살펴보았다.
Many researches have been devoted to the small area estimation related with the area level statistics. Almost all of the small area estimation methods are derived based on minimization of mean squared error(MSE). Recently Hwang and Shin (2008) suggested an alternative small area estimation method by minimizing mean squared percentage error. In this paper we apply this small area estimation method to the labor statistics, especially monthly wages by a branch area of labor department. The Monthly Labor Survey data (2007) is used for analysis and comparison of these methods.