DOI QR코드

DOI QR Code

Fitting Bivariate Generalized Binomial Models of the Sarmanov Type

Sarmanov형 이변량 일반화이항모형의 적합

  • 이주용 (산은자산운용(주) 리스크관리팀) ;
  • 김기영 (고려대학교 통계학과)
  • Published : 2009.04.30

Abstract

For bivariate binomial data with both intra and inter-class correlation, Danaher and Hardie (2005) proposed a bivariate beta-binomial model. However, the model is limited to the situation where the intra-class correlation is strictly positive. Thus it might be seriously inadequate for data with a negative intra-class correlation. Several authors have considered generalized binomial distributions covering a wider range of intra-class correlation which could relax the possible model restrictions imposed. Among others there are the additive/multiplicative and the beta/extended beta binomial model. In this study, bivariate models of the Sarmanov (1966) type are formed by combining each of those univariate models to take care of the inter-class correlation, and are evaluated in terms of the goodness-of-fit. As a result, B-mB and B-ebB are fitted, successfully, to real data and that B-mB, which has a wider permissible range than B-ebB for the intra-class correlation is relatively preferred.

급내/급간상관이 동시에 존재하는 이변량 이항자료에 대한 모형으로 Danaher과 Hardie (2005)는 베타이항분포를 제안한바 있다. 그러나 이 모형은 베타분포에 따르는 성공확률을 통해 급내 상관을 묘사하므로 그 적용범위가 양의 급내상관을 가지는 자료에 제한된다. 이 연구에서는 보다 더 넓은 범위의 급내 상관에 대해 유용성을 가지는 일반화가법/승법이항모형과 확장베타이항모형 등에 Sarmanov형식의 이변량 확장을 고려하고 이들을 기존 모형과 적합도의 측면에서 비교한다. 실제자료인 주식자료와 소비자패널자료에 이변량 일반화이항모형들을 적용한 결과, B-mB와 B-ebB의 성능이 우수한 것으로 나타나며, 그 중 상대적으로 넓은 허용범위의 급내상관을 가지는 B-mB가 선호된다고 할 수 있다.

Keywords

References

  1. 김병수, 오경주, 박철용 (1995). 가산자료(count data)의 과산포 검색: 일반화 과정, <응용통계연구>, 8, 147-161
  2. Altham, P. M. E. (1978). Two generalizations of the binomial distribution, Applied Statistics, 27, 162-167 https://doi.org/10.2307/2346943
  3. Bahadur, R. R. (1961). A Representation of the Joint Distribution of Responses to n Dichotomous Items, In Studies in Item Analysis & Prediction, Stanford University Press, Stanford
  4. Danaher, P. J. and Hardie, G. S. (2005). Bacon with your eggs? Applications of a new bivariate beta-binomial distribution, The American Statistician, 59, 282-286 https://doi.org/10.1198/000313005X70939
  5. Farlie, D. J. G. (1960). The performance of some correlation coefficients for a general bivariate distribution, Biometrika, 47, 307-323 https://doi.org/10.1093/biomet/47.3-4.307
  6. Griffiths, D. A. (1973). Maximum likelihood estimation for the beta-binomial distribution and an application to the household distribution of the total number of cases of a disease, Biometrics, 29, 637-648 https://doi.org/10.2307/2529131
  7. Kupper, L. L. and Haseman, J. K. (1978). The use of a correlated binomial model for the analysis of certain toxicological experiments, Biometrics, 34, 69-76 https://doi.org/10.2307/2529589
  8. Lee, M. L. T. (1996). Properties and applications of the Sarmanov family of bivariate distributions, Communications in Statistics-Theory and Methods, 25, 1207-1222 https://doi.org/10.1080/03610929608831759
  9. Paul, S. R. (1987). On the beta-correlated binomial distribution - A three parameter generalization of the binomial distribution, Communication in Statistics-Theory and Methods, 16, 1473-1478 https://doi.org/10.1080/03610928708829449
  10. Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discussion of correlation induced by covariate measurement errors, Journal of the American Statistical Association, 81,321-327 https://doi.org/10.2307/2289219
  11. Sarmanov, O. V. (1966). Generalized normal correlation and two-dimensional Frechet classes, Doklady(Soviet Mathematics), 168, 596-599
  12. Skellam, J. G. (1948). A probability distribution derived from the binomial distribution by regarding the probability of a success as variable between the sets of trials, Journal of the Royal Statistical Society, BI0, 257-261
  13. Williams, D. A. (1975). The analysis of binary responses from toxicological experiments involving reproduction and teratogenicity, Biometrics, 31, 949-952 https://doi.org/10.2307/2529820