Antioxidant Properties of Water and Aqueous Ethanol Extracts and Their Crude Saponin Fractions from a Far-eastern Sea Cucumber, Stichopus japonicus

  • Husni, Amir (Department of Marine Food Science and Technology, Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University) ;
  • Shin, Il-Shik (Department of Marine Food Science and Technology, Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University) ;
  • You, Sang-Guan (Department of Marine Food Science and Technology, Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University) ;
  • Chung, Dong-Hwa (Department of Marine Food Science and Technology, Faculty of Marine Bioscience and Technology, Kangnung-Wonju National University)
  • Published : 2009.04.30

Abstract

Water and 70% ethanol extracts obtained from a sea cucumber (Stichopus japonicus) body wall by heat reflux or pressurized solvent extraction showed 2,2-diphenyl-1-picrylhydrazyl ($DPPH^{\cdot}$) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation ($ABTS^{{\cdot}+}$) scavenging activities comparable to those of fruits and vegetables. The highest activities were observed for the water extract from heat reflux extraction. Crude saponins exhibited higher radical scavenging activities than the soluble matters in the extracts. However, they were responsible for only about 3 to 15% of the scavenging activities of the extracts. Total phenolic contents showed a significant correlation with $DPPH^{\cdot}$ scavenging activities, suggesting a significant contribution of phenolic constituents to the antioxidant properties of the extracts. However, total flavonoid contents showed little correlation with the radical scavenging activities. The results suggest that the water or 70% ethanol extract obtained from sea cucumber body wall by simple heat reflux extraction could provide considerable antioxidant benefits.

Keywords

References

  1. Kitagawa I, Sugawara T, Yosioka I. Saponin and sapogenol. XV. Antifungal glycosides from the sea cucumber Stichopus japonicus SELENKA. (2) Structures of holotoxin A and holotoxin B. Chem. Pharm. Bull. 24: 275-284 (1976) https://doi.org/10.1248/cpb.24.275
  2. Mourao PAS, Pereira MS, Pavao MSG, Mulloy B, Tollefsen DM, Mowinckel MC, Abildgaard U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from Echinoderm. J. Biol. Chem. 271: 23973-23984 (1996) https://doi.org/10.1074/jbc.271.39.23973
  3. Maier MS, Roccatagliata AJ, Kuriss A, Chludil H, Seldes AM, Pujol CA, Damonte EB. Two new cytotoxic and virucidal trisulfated triterpene glycosides from the Antarctic sea cucumber Staurocucumis liouvillei. J. Nat. Prod. 64: 732-736 (2001) https://doi.org/10.1021/np000584i
  4. Kaneko M, Kisa F, Yamada K, Miyamoto T, Higuchi R. Structure of a new neuritogenic-active ganglioside from the sea cucumber Stichopus japonicus. Eur. J. Org. Chem. 6: 1004-1008 (2003)
  5. Tian F, Zhang X, Tong Y, Yi Y, Zhang S, Li L, Sun P, Lin L, Ding J. PE, a new sulfated saponin from sea cucumber, exhibits antiangiogenic and anti-tumor activities in vitro and in vivo. Cancer Biol. Ther. 4: 874-882 (2005) https://doi.org/10.4161/cbt.4.8.1917
  6. Aminin DL, Pinegin BV, Pichugina LV, Zaporozhets TS, Agafonova IG, Boguslavski VM, Silchenko AS, Avilov SA, Stonik VA. Immunomodulatory properties of Cumaside. Int. Immunopharmacol. 6: 1070-1082 (2006) https://doi.org/10.1016/j.intimp.2006.01.017
  7. Mamelona J, Pelletier É, Girard-Lalancette K, Legault J, Karboune S, Kermasha S. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chem. 104: 1040-1047 (2007) https://doi.org/10.1016/j.foodchem.2007.01.016
  8. Zhong Y, Khan MA, Shahidi F. Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa). J. Agr. Food Chem. 55: 1188-1192 (2007) https://doi.org/10.1021/jf063085h
  9. Sur P, Chaudhuri T, Vedasiromoni JR, Gomes A, Ganguly DK. Antiinflammatory and antioxidant property of saponins of tea [Camellia sinensis (L) O. Kuntze] root extract. Phytother. Res. 15:174-176 (2001) https://doi.org/10.1002/ptr.696
  10. Gulcin İ, Mshvildadze V, Gepdiremen A, Elias R. The antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchita: 3-O-($\beta$-D-glucopyranosil)-hederagenin. Phytother. Res. 20: 130-134 (2006) https://doi.org/10.1002/ptr.1821
  11. Xi M, Hai C, Tang H, Chen M, Fang K, Liang X. Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus. Phytother. Res. 22:228-237 (2008) https://doi.org/10.1002/ptr.2297
  12. Kerr RG, Chen Z. In vivo and in vitro biosynthesis of saponins in sea cucumbers. J. Nat. Prod. 58: 172-176 (1995) https://doi.org/10.1021/np50116a002
  13. Kaufmann B, Christen P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Analysis 13: 105-113 (2002) https://doi.org/10.1002/pca.631
  14. Denery JR, Dragull K, Tang CS, Li QX. Pressurized fluid extraction of carotenoids from Haematococcus pluvialis and Dunaliella salina and kavalactones from Piper methysticum. Anal. Chim. Acta 501:175-181 (2004) https://doi.org/10.1016/j.aca.2003.09.026
  15. Herrero M, Martín-Alvarez PJ, Senorans FJ, Cifuentes A, Ibanez E. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chem. 93: 417-423 (2005) https://doi.org/10.1016/j.foodchem.2004.09.037
  16. Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Tech. 17: 300-312 (2006) https://doi.org/10.1016/j.tifs.2005.12.004
  17. Kwon JH, Belanger JMR, Pare JRJ. Optimization of microwaveassisted extraction (MAP) for ginseng components by response surface methodology. J. Agr. Food Chem. 51: 1807-1810 (2003) https://doi.org/10.1021/jf026068a
  18. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30 (1995) https://doi.org/10.1016/S0023-6438(95)80008-5
  19. Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agr. Food Chem. 50: 3713-3717 (2002) https://doi.org/10.1021/jf020071c
  20. Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, Andoh T, Shinohara A, Nakata M. Evaluation of the antioxidant activity of environmental plants: Activity of the leaf extracts from seashore plants. J. Agr. Food Chem. 47: 1749-1754 (1999) https://doi.org/10.1021/jf980864s
  21. Maisuthisakul P, Suttajit M, Pongsawatmanit R. Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chem. 100: 1409-1418 (2007) https://doi.org/10.1016/j.foodchem.2005.11.032
  22. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Li HB, Cheng KW, Wong CC, Fan KW, Chen F, Jiang Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem. 102: 771-776 (2007) https://doi.org/10.1016/j.foodchem.2006.06.022
  24. Maksimovic Z, Malencic D, Kovacevic N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technol. 96: 873-877 (2005) https://doi.org/10.1016/j.biortech.2004.09.006
  25. Shouqin Z, Ruizhan C, Changzheng W. Experiment study on ultrahigh pressure extraction of ginsenosides. J. Food Eng. 79: 1-5 (2007) https://doi.org/10.1016/j.jfoodeng.2005.12.048