DOI QR코드

DOI QR Code

Characteristics of Exopolysaccharide Produced in Goat Milk Yogurt Cultured with Streptococcus thermophilus LFG Isolated from Kefir

Kefir에서 분리한 Streptococcus thermophilus LFG를 배양한 산양유 발효물에서 분리된 다당체의 특성

  • Lim, Young-Soon (Department of Applied Biology and Chemistry, Konkuk University) ;
  • Lee, Si-Kyung (Department of Applied Biology and Chemistry, Konkuk University)
  • 임영순 (건국대학교 응용생물화학과) ;
  • 이시경 (건국대학교 응용생물화학과)
  • Published : 2009.04.30

Abstract

This study was carried out to investigate the properties of crude exopolysaccaride (CEPS) produced by Streptococcus thermophilus LFG in goat milk. The yields of CEPS from yogurt cultured with Str. thermophilus LFG were greater at higher temperatures $(40-45^{\circ}C)$ than at lower temperatures $(30-35^{\circ}C)$. Goat milk yogurt had lower viscosity values than cow milk yogurt. However, the CEPS yield was higher in goat milk yogurt than in cow milk yogurt. The yields of CEPS from yogurt were also higher in cultured milk containing 3% glucose (14-21%), and 3% sucrose (4-16%) relative to the control yogurt. Antioxidant activities were higher in goat milk yogurt supernatant (21%) and its CEPS (28%) than cow milk yogurt supernatant (11%) and its CEPS (24%). The amino acid contents of CEPS were higher in yogurt using goat milk than that using cow milk. The CEPS extracted from goat milk yogurt produced by Str. thermophilus LFG consists of carbohydrate (37% w/w) and protein (63% w/w). The CEPS consisted of monosaccharides such as glucose 56.45% (w/w), galactose 42.35% (w/w), galactosamine 1.37% (w/w), glucosamine 1.09% (w/w) and fucose 0.27% (w/w).

Kefir 제품으로부터 분리한 Str. thermophilus LFG를 이용하여 산양유 발효유를 제조하고, 이의 다당체를 이용하기 위하여 발효조건 및 다당체의 특성을 조사한 결과는 다음과 같다. 배양온도에 따른 Str. thermophilus LFG로 제조한 발효물의 CEPS 생산성은 저온$(30-35^{\circ}C)$에서 보다 고온$(40-45^{\circ}C)$배양에서 높았으며, 점도는 우유발효물이 산양유 발효물 비하여 다소 높았지만, CEPS의 생성량은 우유 발효물(4.06-4.46g/L)에서 보다 산양유 발효물(4.74-5.30g/L)에서의 생산성이 높았다. 당류에 따른 CEPS생성량은 무첨가구에 비하여 glucose 3% 첨가구가 14-21%, sucrose 3% 첨가구가 4-16% 상승효과를 보였으며, fructose 3%의 경우는 첨가효과가 나타나지 않았다. 우유 발효물 및 산양유 발효물로부터 분리한 상등백과 CEPS의 전자공여능을 확인한 결과 우유 발효물의 상등액과 CEPS가 산양유 발효물의 상등액과 CEPS 보다 유의적으로 높은 전자공여 효과를 나타내었다. 우유 및 산양유 발효물로부터 CEPS를 각각 분리하여 아미노산의 조성을 비교 분석하였을 때 전체적으로 산양유에서 분리한 CEPS에서 비교적 높은 아미노산 함량을 보였다. 산양유 발효물로부터 분리된 crude exopolysaccharide(CEPS)의 탄수화물함량은 37%, 단백질 함량은 63%이었으며, 구성 당을 분석한 결과, glucose 56.45%, galactose 42.35%, fucose 0.27%(w/w)와 amino sugars로는 galactosamine 1.37%, glucosamine 1.09%를 함유하였다.

Keywords

References

  1. Aspinall, G. O. (1985) The polysaccharides, Academic Press Co., New York, Vol. 3
  2. Bae, H. C., Cho, I. S., and Nam, M. S. (2005) Effects of the biological function of yogurt added with Lycium chinence miller extract. J. Anim. Sci. & Technol. (Kor.) 47, 1051-1058 https://doi.org/10.5187/JAST.2005.47.6.1051
  3. Berg, J. C., Smiths, A., Pot, B., Ledeboer, A. M., Kersters, K., Verbakel, M. A., and Verrips, C. T. (1993) Isolation, screening and identification of lactic acid bacteria from traditional food fermentation processes and culture collections. Food Biotech. 7, 189-205 https://doi.org/10.1080/08905439309549857
  4. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1202 https://doi.org/10.1038/1811199a0
  5. Cerning, J., Bouillanne, C., Landon, M., and Desmazeaud, M. (1992) Isolation and characterization of exopolysaccharides from slime forming mesophilic lactic acid bacteria. J. Dairy Sci. 75, 692-699 https://doi.org/10.3168/jds.S0022-0302(92)77805-9
  6. DeVuyst, L., Vanderveken, F., Van de Ven, S., and Degeest, B. (1998) Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in a milk medium and evidence for their growth associated biosynthesis. J. Appl. Microbiol. 84, 1059-1068 https://doi.org/10.1046/j.1365-2672.1998.00445.x
  7. Dick, J. C., Robijn, G. W., Janssen, A. C., Giuseppin, M. L. F., Vreeker, R., Kamerling, J. P., Vliegnthart, J. F. G., Ledeboer, A. M., and Verrips, C. T. (1995) Production of a novel extracellular polysaccharide by Lactobacillus sake 0-1 and characterization of the polysaccharide. Appl. Environ. Microbiol. 61, 2840-2844
  8. Dufresne, R. J. and Lencki, R. (1990) The effect of pressure on the growth of Aureobasidium pullulans and the synthesis of pullulan. Appl. Microbiol. Biotech. 32, 526-532 https://doi.org/10.1007/BF00173722
  9. Fu, J. F. and Tseng, Y. H. (1990) Construction of lactose utilizing Xanthomonas campestris and production of xanthan gum from whey. Appl. Environ. Microbiol. 56, 919-923
  10. Hur, C. S., Lee, J. H., Baek, Y. J., and Kim, H. U. (1995) Characteristics of polysaccharide produced by bifidobacteria and lactic acid bacteria. Kor. J. Dairy Technol. Sci. 13, 27-39
  11. Jenness, R. (1980) Composition and characteristics of goat milk : Review 1968-1979. J. Dairy Sci. 63, 1605-1630 https://doi.org/10.3168/jds.S0022-0302(80)83125-0
  12. Jeong, D. H. (1998) Biological function of food. Sun Jin Mun Hwa Sa, Seoul, Korea, pp. 212-239
  13. Kang, H. J., Baick, S. C., and Yu, J. H. (2005) Studies on the properties of the stirred yogurt manufactured by exopolysaccharide producing lactic acid bacteria. Kor. J. Food Sci. Ani. Resour. 25, 84-91
  14. Kang, H. M. and Chung, C. I. (1999) A review on the functionality of exopolysaccharides produced from lactic acid bacteria. Kor. Dairy Technol. 17, 101-108
  15. Kang, H. M., Son, I. S., Um, Y. S. and Chung, C. I. (1999) Comparison of exopolysaccharide producing lactic acid bacteria isolated from fermented foods. I. A study on the availability of carbon sources for exopolysaccharide production by Str. thermophilous and Lactobacillus spp. Kor. J. Food Sci. Ani. Resour. 19, 121-126
  16. Keating, K. (1985) The role of cultured dairy products in the prevention of stomach cancer. Cultured Dairy Products J. 20, 13-14
  17. Kimmel, S. A., Roberts, R. F., and Ziegler, G. R. (1998) Optimization of exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus RR grown in a semi-defined medium. Appl. Environ. Microbiol. 64, 659-664
  18. Kitazawa, H., Toba, T., Itoh, T., Kumano, N., and Adachi, S. (1990) Anti-tumoral activity of slime-forming encapsulated Lc. lactis subsp. cremoris isolated from Scandinavian ropy fermented milk 'villi'. Anim. Sci. Technol. Japan 62, 277- 283
  19. Kwon, Y. J., Kwon, J. H., Park, K. H., Park, Y. K., and Yang, H.C. (1998) Food chemistry. Young Ji Sa, Seoul, Korea, p. 156
  20. Lim, Y. S., Kim, S. Y., and Lee, S. K. (2008) Characteristics of lactic acid bacteria from kefir made of goat milk. Kor. J. Food Sci. Ami. Resour. 28, 82-90 https://doi.org/10.5851/kosfa.2008.28.1.82
  21. Margaritis, A. and Pace, G. W. (1985) Microbial polysaccharides. In Comprehensive Biotechnology. Pergamon, Oxford. 3, 1005-1044
  22. Mitsuda, S., Miyata, N., Hirota, T., and Kikuchi, T. (1981) High-viscosity polysaccharide by Bacillus polymyxa. Hakkokogaku Kaishi. 59, 303-309
  23. Oda, M., Hasegawa, H., Komatsu, S., Kambe, M., and Tsuchiya, F. (1983) Anti-tumor polysaccharide from Lactobacillus sp. Agric. Biol. Chem. 47, 1623-1625 https://doi.org/10.1271/bbb1961.47.1623
  24. Rice-Evans, C. A. and Diplock, A. T. (1993) Current status of antioxidant therapy. Free Radic. Biol. Med. 15, 77-86 https://doi.org/10.1016/0891-5849(93)90127-G
  25. Ruas-Madiedo, P., Hufenholtz, J., and Zoon, P. (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int. Dairy J. 12, 163-171 https://doi.org/10.1016/S0958-6946(01)00160-1
  26. Schellhaass, S. M. (1983) Characterization of exocellular slime produced by bacterial starter cultures used in the manufacture of fermented dairy products. Ph.D. thesis, Univ. of Minnesota, St. Paul, USA
  27. Sutherland, I. W. (1972) Bacterial exopolysaccharide. Adv. Microbial physio. 8, 143-213 https://doi.org/10.1016/S0065-2911(08)60190-3
  28. Thierry, D., Didier, C., Patricia, R., Alain, L., and Bernard, F. (1991) Rapid isolation and estimation of polysaccharide form fermented skim milk Streptococcus salivarius subsp. thermophilus by coupled anion exchange and gel-permeation high-performance liquid chromatography. J. Dairy Res. 58, 147-150 https://doi.org/10.1017/S0022029900033598
  29. White, J. A., Hart, R. J., and Fry, J. C. (1986) An evaluation of Waters Pico-Tag system for the amino acid analysis of food materials. J. Automat. Chem. 8, 167-177 https://doi.org/10.1155/S1463924686000329
  30. Yang, J. Y. (1991) Production and characterization of levan by Bacillus polymyxa D1. Ph.D. thesis, Seoul National Univ. Seoul, Korea
  31. Yoo, H. J., Lee, S. H., Lee, D. S., and Kim, H. B. (2002) Antioxidant Activity of Fermented barley, wormwood, sea tangle and soybeen. Kor. J. Microbiol. 38, 230-233
  32. Zisu, B. and Shah, N. P. (2003) Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1257. J. Dairy Sci. 86, 3405-3415 https://doi.org/10.3168/jds.S0022-0302(03)73944-7

Cited by

  1. Changes in Lactic Acid Bacteria and Physicochemical Properties of Yogurt Made with High Pressure Processing Treated Milk vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.889
  2. Characteristics of Cow Milk and Goat Milk Yogurts Fermented by Streptococcus thermophilus LFG Isolated from Kefir vol.33, pp.6, 2013, https://doi.org/10.5851/kosfa.2013.33.6.787
  3. Inhibitory Effect of Polysaccharide from Kefir Grain on the Infection of MA-104 Cell by Human Rotavirus vol.31, pp.1, 2011, https://doi.org/10.5851/kosfa.2011.31.1.081