Development of Halfedge-based Triangular Mesh Data Structure

반모서리 기반의 삼각망 자료 구조 개발

  • 정연찬 (서울산업대학교 금형설계학과) ;
  • 장민호 (단국대학교 기계공학과)
  • Published : 2009.02.01

Abstract

Triangular mesh models are widely used in reverse engineering, computer graphics, rapid prototyping and NC(numerical controller) tool-path generation. Triangular mesh models are generated from point clouds, surface models and solid models. A halfedge-based triangular mesh data structure is proposed and the development considerations are presented. In the presented data structure, halfedge is the key data structure. Halfedge stores its triangle index and the order in the triangle. Triangles do not store the halfedge lists explicitly. Halfedge is referred by value and defined when it is required. Proposed data structure supports four design requirements: efficient rendering, compact memory, supporting efficient algorithms and easy programming.

Keywords

References

  1. 박상철, "가시 정보를 이용한 삼각망의 꼬임 찾기", 한국CAD/CAM학회 논문집, 제9권, 제4호, pp. 382-386, 2004
  2. Ji, S. J. and Wang, Y., "Rapid Separation of Disconnected Triangle Meshes based on Graph Traversal", Journal of Physics: Conference Series, Vol. 48, pp. 485-489, 2006 https://doi.org/10.1088/1742-6596/48/1/092
  3. Ohtake, Y., Belyaev, A. and Seidel, H. P., "A Composite Approach to Meshing Scattered Data", Graphical Models, Vol 30, No. 3, pp. 255-267, 2006 https://doi.org/10.1016/j.gmod.2006.03.002
  4. Nonato, L. G., Lizier, M. A. S., Batista, J., Oliveira, M. C. F. and Castelo, A., "Topological Triangle Characterization with Application to Object Detection from Images", Image and Vision Computing, Vol. 26, No. 8, pp. 1081-1093, 2008 https://doi.org/10.1016/j.imavis.2007.11.011
  5. 정연찬, "오픗셋 삼각형의 절단과 교선 추적에 의한 공구 경로 계산", 한국CAD/CAM학회 논문집, 제10권, 제6호, pp. 455-464, 2005
  6. Mantyla, M., An Introduction to Solid Modeling, Computer Science Press, 1988
  7. Chiyokura, H., Solid Modeling with DESIGNBASE: Theory and Implementation, Addison-Wesley, 1988
  8. Lee, K., Principles of CAD/CAM/CAE Systems, Prentice Hall, 1999
  9. OpenGL Architecture Review Board, OpenGL Programming Guide, Addison-Wesley Professional, 5th edition, 2005
  10. Baumgart, B. G., "A Polyhedron Representation for Computer Vision", National Computer Conference, pp. 589-596, 1975 https://doi.org/10.1145/1499949.1500071
  11. Braid, I., Hillyard, R. and Stroud, I., "Stepwise Construction of Polyhedra in Geometric Modeling", CAD Group Document No. 100, Cambridge University Computer Laboratory, 1978
  12. Zorin, D. et al., "Subdivision for Modeling and Animation", SIGGRAPH 00 Course Notes, 2000
  13. 박상근, 이상헌, "간결하고 효율적인 폴리곤 메쉬의 표현 구조", 한국CAD/CAM학회 논문집, 제9권, 제4호, pp. 294-305, 2004
  14. Compagna, S., Kobbelt, L. and Seidel, H. P., "Directed Edges - A Scalable Representation for Triangle Meshes", Journal of Graphics Tools, Vol.3, No. 4, pp. 1-11, 1998 https://doi.org/10.1080/10867651.1998.10487494
  15. Besl, P. J. and McKay, N. D., "A Method for Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256, 1992 https://doi.org/10.1109/34.121791
  16. Chen, Y. and Medioni, G., "Object Modeling by Registration of Multiple Range Images", Image and Vision Computing, Vol. 10, pp. 145-155, 1992 https://doi.org/10.1016/0262-8856(92)90066-C
  17. Lorensen, W. E. and Cline, H. E., "Marching Cubes: A High Resolution 3D Surface Construction Algorithm," SIGGRAPH 87 Conference Proceedings, pp.163-169, 1987 https://doi.org/10.1145/37401.37422
  18. Turk, G. and Levoy, M., "Zippered Polygon Meshes from Range Images", SIGGRAPH 94 Conference Proceedings, pp. 311-318, 1994 https://doi.org/10.1145/192161.192241
  19. Garland, M. and Heckbert, P. S., "Surface Simplification Using Quadric Error Metric", Proc. SIGGRAPH 97, pp. 209-216, 1997 https://doi.org/10.1145/258734.258849
  20. Taubin G., "A Signal Processing Approach to Fair Surface Design", SIGGRAPH 95, pp. 351-358, 1995 https://doi.org/10.1145/218380.218473
  21. Natarajan, V. and Edelsbrunner, H., "Simplification of Three-dimensional Density Maps", IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 5, pp. 586-597, 2004 https://doi.org/10.1109/TVCG.2004.32
  22. 3D ACIS Modeler, www.spatial.com