DOI QR코드

DOI QR Code

ON COMPUTER TOPOLOGICAL FUNCTION SPACE

  • Han, Sang-Eon (FACULTY OF LIBERAL EDUCATION, INSTITUTE OF PURE AND APPLIED MATHEMATICS CHONBUK NATIONAL UNIVERSITY) ;
  • Georgiou, Dimitris N. (UNIVERSITY OF PATRAS DEPARTMENT OF MATHEMATICS)
  • Published : 2009.07.01

Abstract

In this paper, we give and study the notion of computer topological function space between computer topological spaces with $k_i$ adjacency, i $\in$ {0, 1}. Using this notion, we study various properties of topologies of a computer topological function space.

Keywords

References

  1. C. Berge, Graphs and Hypergraphs, 2nd ed., North-Holland, Amsterdam, 1976
  2. L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), no. 1, 51–62 https://doi.org/10.1023/A:1008370600456
  3. J. Dontchev and H. Maki, Groups of $\theta$-generalized homeomorphisms and the digital line, Topology Appl. 95 (1999), no. 2, 113–128 https://doi.org/10.1016/S0166-8641(98)00004-2
  4. G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott, A Compendium of Continuous Lattices, Springer-Verlag, Berlin-New York, 1980
  5. S. E. Han, Computer topology and its applications, Honam Math. J. 25 (2003), no. 1, 153–162
  6. S. E. Han, Algorithm for discriminating digital images w.r.t. a digital $(k_0, k_1)$-homeomorphism, J. Appl. Math. Comput. 18 (2005), no. 1-2, 505–512
  7. S. E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), no. 1-3, 73–91 https://doi.org/10.1016/j.ins.2004.03.018
  8. S. E. Han, On the simplicial complex stemmed from a digital graph, Honam Math. J. 27 (2005), no. 1, 115–129
  9. S. E. Han, Connected sum of digital closed surfaces, Inform. Sci. 176 (2006), no. 3, 332–348 https://doi.org/10.1016/j.ins.2004.11.003
  10. S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Inform. Sci. 177 (2007), no. 16, 3314–3326 https://doi.org/10.1016/j.ins.2006.12.013
  11. S. E. Han, Strong k-deformation retract and its applications, J. Korean Math. Soc. 44 (2007), no. 6, 1479–1503 https://doi.org/10.4134/JKMS.2007.44.6.1479
  12. S. E. Han, Continuities and homeomorphisms in computer topology and their applications, J. Korean Math. Soc. 45 (2008), no. 4, 923–952 https://doi.org/10.4134/JKMS.2008.45.4.923
  13. S. E. Han, Equivalent $(k_0, k_1)$-covering and generalized digital lifting, Inform. Sci. 178 (2008), no. 2, 550–561 https://doi.org/10.1016/j.ins.2007.02.004
  14. S. E. Han, The k-homotopic thinning and a torus-like digital image in $Z^n$, J. Math. Imaging Vision 31 (2008), no. 1, 1–16 https://doi.org/10.1007/s10851-007-0061-2
  15. E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), no. 1, 1–17 https://doi.org/10.1016/0166-8641(90)90031-V
  16. I. S. Kim, S. E. Han, and C. J. Yoo, The pasting property of digital continuity, Acta Applicandae Mathematicae (2009), doi 10.1007/s 10440-008-9422-0, Online first publication
  17. T. Y. Kong and A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996
  18. E. Melin, Extension of continuous functions in digital spaces with the Khalimsky topology, Topology Appl. 153 (2005), no. 1, 52–65 https://doi.org/10.1016/j.topol.2004.12.004
  19. T. Noiri, On $\delta$-continuous functions, J. Korean Math. Soc. 16 (1979/80), no. 2, 161–166
  20. A. Rosenfeld, Arcs and curves in digital pictures, J. Assoc. Comput. Mach. 20 (1973), 81–87 https://doi.org/10.1145/321738.321745
  21. J. Slapal, Digital Jordan curves, Topology Appl. 153 (2006), no. 17, 3255–3264 https://doi.org/10.1016/j.topol.2005.10.011

Cited by

  1. KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS vol.47, pp.5, 2010, https://doi.org/10.4134/JKMS.2010.47.5.1031
  2. CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY vol.33, pp.2, 2011, https://doi.org/10.5831/HMJ.2011.33.2.231
  3. Generalizations of continuity of maps and homeomorphisms for studying 2D digital topological spaces and their applications vol.196, 2015, https://doi.org/10.1016/j.topol.2015.05.024
  4. Homotopy equivalence which is suitable for studying Khalimsky nD spaces vol.159, pp.7, 2012, https://doi.org/10.1016/j.topol.2011.07.029
  5. REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS vol.31, pp.3, 2009, https://doi.org/10.5831/HMJ.2009.31.3.279
  6. COMPARISON OF CONTINUITIES IN DIGITAL TOPOLOGY vol.34, pp.3, 2012, https://doi.org/10.5831/HMJ.2012.34.3.451
  7. EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY vol.47, pp.5, 2010, https://doi.org/10.4134/BKMS.2010.47.5.915