DOI QR코드

DOI QR Code

SEMICONTINUOUS PLANAR TOTAL PREORDERS ON NON-SEPARABLE METRIC SPACES

  • Campioon, Marla Jesuus (UNIVERSITY PUBLICA DE NAVARRA DEPARTMENTO DE MATEMATICAS CAMPUS ARROSADIA) ;
  • Candeal, Juan Carlos (UNIVERSIDAD DE ZARAGOZA FACULTAD DE CIENCIAS ECONOMICASY EMPRESARIALES DEPARTAMENTO DE ANALISIS ECONOMICO) ;
  • Indurain, Esteban (UNIVERSIDAD PUBLICA DE NAVARRA DEPARTMENTO DE MATEMATICAS CAMPUS ARROSADIA)
  • Published : 2009.07.01

Abstract

We prove that every non-separable connected metric space can be endowed with a total preorder that is order-isomorphic to a nonrepresentable subset of the lexicographic plane and semicontinuous with respect to the metric topology.

Keywords

References

  1. C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis: A Hitchhiker's Guide, Second edition, Springer-Verlag, Berlin, 1999
  2. C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin, 1990
  3. A. F. Beardon, Totally ordered subsets of Euclidean space, J. Math. Econom. 23 (1994), no. 4, 391–393 https://doi.org/10.1016/0304-4068(94)90022-1
  4. A. F. Beardon, Utility theory and continuous monotonic functions, Econom. Theory 4 (1994), no. 4, 531–538 https://doi.org/10.1007/BF01213622
  5. A. F. Beardon, J. C. Candeal, G. Herden, E. Indur´ain, and G. B. Mehta, The nonexistence of a utility function and the structure of non-representable preference relations, J. Math. Econom. 37 (2002), no. 1, 17–38 https://doi.org/10.1016/S0304-4068(02)00003-4
  6. A. F. Beardon, J. C. Candeal, G. Herden, E. Indurain, and G. B. Mehta, Lexicographic decomposition of chains and the concept of a planar chain, J. Math. Econom. 37 (2002), no. 2, 95–104 https://doi.org/10.1016/S0304-4068(02)00010-1
  7. T. Bewley, Existence of equilibria in economies with infinitely many commodities, J. Econom. Theory 4 (1972), no. 3, 514–540 https://doi.org/10.1016/0022-0531(72)90136-6
  8. G. Bosi, J. C. Candeal, and E. Indurain, Continuous representability of homothetic preferences by means of homogeneous utility functions, J. Math. Econom. 33 (2000), no. 3, 291–298 https://doi.org/10.1016/S0304-4068(99)00030-0
  9. G. Bosi and G. Herden, On the structure of completely useful topologies, Appl. Gen. Topol. 3 (2002), no. 2, 145–167
  10. G. Bosi and G. Herden, On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 22 (2005), no. 4, 329–342 https://doi.org/10.1007/s11083-005-9022-9
  11. G. Bosi and G. Herden, On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 23 (2006), no. 4, 271–296 https://doi.org/10.1007/s11083-006-9047-8
  12. D. S. Bridges and G. B. Mehta, Representations of Preferences Orderings, Lecture Notes in Economics and Mathematical Systems, 422. Springer-Verlag, Berlin, 1995
  13. M. J. Campion, J. C. Candeal, A. S. Granero, and E. Indurain, Ordinal representability in Banach spaces, Methods in Banach space theory, 183–196, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006
  14. M. J. Campion, J. C. Candeal, and E. Indurain, On Yi's extension property for totally preordered topological spaces, J. Korean Math. Soc. 43 (2006), no. 1, 159–181 https://doi.org/10.4134/JKMS.2006.43.1.159
  15. M. J. Campion, J. C. Candeal, and E. Indurain, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227–237 https://doi.org/10.1016/j.mathsocsci.2005.07.007
  16. J. C. Candeal, C. Herves, and E. Indurain, Some results on representation and extension of preferences, J. Math. Econom. 29 (1998), no. 1, 75–81 https://doi.org/10.1016/S0304-4068(97)00005-0
  17. J. C. Candeal and E. Indurain, Utility functions on chains, J. Math. Econom. 22 (1993), no. 2, 161–168 https://doi.org/10.1016/0304-4068(93)90045-M
  18. J. C. Candeal and E. Indurain, Lexicographic behaviour of chains, Arch. Math. (Basel) 72 (1999), no. 2, 145–152 https://doi.org/10.1007/s000130050315
  19. J. C. Candeal, E. Indurain, and G. B. Mehta, Further remarks on totally ordered representable subsets of Euclidean space, J. Math. Econom. 25 (1996), no. 4, 381–390 https://doi.org/10.1016/0304-4068(95)00734-2
  20. J. C. Candeal, E. Indurain, and G. B. Mehta, Order preserving functions on ordered topological vector spaces, Bull. Austral. Math. Soc. 60 (1999), no. 1, 55–65 https://doi.org/10.1017/S0004972700033323
  21. R. Engelking, Outline of General Topology, Translated from the Polish by K. Sieklucki North-Holland Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York 1968
  22. M. Estevez and C. Herves, On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), no. 4, 305–309 https://doi.org/10.1016/0304-4068(94)00701-B
  23. A. Giarlotta, Representable lexicographic products, Order 21 (2004), no. 1, 29–41 https://doi.org/10.1007/s11083-004-9308-3
  24. A. Giarlotta, The representability number of a chain, Topology Appl. 150 (2005), no. 1-3, 157–177 https://doi.org/10.1016/j.topol.2004.05.016
  25. G. Herden and A. Pallack, Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), no. 1, 61–82
  26. R. Isler, Semicontinuous utility functions in topological spaces, Riv. Mat. Sci. Econom. Social. 20 (1997), no. 1, 111–116 https://doi.org/10.1007/BF02688992
  27. A. Mas-Colell, Papers presented at the Colloquium on Mathematical Economics, J. Math. Econom. 2 (1975), no. 2, 263–295 https://doi.org/10.1016/0304-4068(75)90028-2
  28. A. Mas-Colell and W. R. Zame, Equilibrium theory in infinite-dimensional spaces, Handbook of mathematical economics, Vol. IV, 1835–1898, Handbooks in Econom., 1, North-Holland, Amsterdam, 1991
  29. P. K. Monteiro, Some results on the existence of utility functions on path connected space, J. Math. Econom. 16 (1987), no. 2, 147–156 https://doi.org/10.1016/0304-4068(87)90004-8
  30. A. J. Ostaszewski, On the descriptive set theory of the lexicographic square, Fund. Math. 87 (1975), no. 3, 261–281 https://doi.org/10.4064/fm-87-3-261-281
  31. T. Rader, The existence of a utility function to represent preferences, Review of Economic Studies 30 (1963), 229–232 https://doi.org/10.2307/2296323
  32. S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), no. 1, 219–235 https://doi.org/10.1016/S0022-247X(03)00285-3
  33. L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Dover, New York, 1978
  34. G. Yi, Continuous extension of preferences, J. Math. Econom. 22 (1993), no. 6, 547–555 https://doi.org/10.1016/0304-4068(93)90003-4

Cited by

  1. Continuous Representability of Interval Orders: The Topological Compatibility Setting vol.23, pp.03, 2015, https://doi.org/10.1142/s0218488515500142
  2. CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES vol.49, pp.3, 2012, https://doi.org/10.4134/JKMS.2012.49.3.449