References
- C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis: A Hitchhiker's Guide, Second edition, Springer-Verlag, Berlin, 1999
- C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Existence and Optimality of Competitive Equilibria, Springer-Verlag, Berlin, 1990
- A. F. Beardon, Totally ordered subsets of Euclidean space, J. Math. Econom. 23 (1994), no. 4, 391–393 https://doi.org/10.1016/0304-4068(94)90022-1
- A. F. Beardon, Utility theory and continuous monotonic functions, Econom. Theory 4 (1994), no. 4, 531–538 https://doi.org/10.1007/BF01213622
- A. F. Beardon, J. C. Candeal, G. Herden, E. Indur´ain, and G. B. Mehta, The nonexistence of a utility function and the structure of non-representable preference relations, J. Math. Econom. 37 (2002), no. 1, 17–38 https://doi.org/10.1016/S0304-4068(02)00003-4
- A. F. Beardon, J. C. Candeal, G. Herden, E. Indurain, and G. B. Mehta, Lexicographic decomposition of chains and the concept of a planar chain, J. Math. Econom. 37 (2002), no. 2, 95–104 https://doi.org/10.1016/S0304-4068(02)00010-1
- T. Bewley, Existence of equilibria in economies with infinitely many commodities, J. Econom. Theory 4 (1972), no. 3, 514–540 https://doi.org/10.1016/0022-0531(72)90136-6
- G. Bosi, J. C. Candeal, and E. Indurain, Continuous representability of homothetic preferences by means of homogeneous utility functions, J. Math. Econom. 33 (2000), no. 3, 291–298 https://doi.org/10.1016/S0304-4068(99)00030-0
- G. Bosi and G. Herden, On the structure of completely useful topologies, Appl. Gen. Topol. 3 (2002), no. 2, 145–167
- G. Bosi and G. Herden, On a strong continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 22 (2005), no. 4, 329–342 https://doi.org/10.1007/s11083-005-9022-9
- G. Bosi and G. Herden, On a possible continuous analogue of the Szpilrajn theorem and its strengthening by Dushnik and Miller, Order 23 (2006), no. 4, 271–296 https://doi.org/10.1007/s11083-006-9047-8
- D. S. Bridges and G. B. Mehta, Representations of Preferences Orderings, Lecture Notes in Economics and Mathematical Systems, 422. Springer-Verlag, Berlin, 1995
- M. J. Campion, J. C. Candeal, A. S. Granero, and E. Indurain, Ordinal representability in Banach spaces, Methods in Banach space theory, 183–196, London Math. Soc. Lecture Note Ser., 337, Cambridge Univ. Press, Cambridge, 2006
- M. J. Campion, J. C. Candeal, and E. Indurain, On Yi's extension property for totally preordered topological spaces, J. Korean Math. Soc. 43 (2006), no. 1, 159–181 https://doi.org/10.4134/JKMS.2006.43.1.159
- M. J. Campion, J. C. Candeal, and E. Indurain, The existence of utility functions for weakly continuous preferences on a Banach space, Math. Social Sci. 51 (2006), no. 2, 227–237 https://doi.org/10.1016/j.mathsocsci.2005.07.007
- J. C. Candeal, C. Herves, and E. Indurain, Some results on representation and extension of preferences, J. Math. Econom. 29 (1998), no. 1, 75–81 https://doi.org/10.1016/S0304-4068(97)00005-0
- J. C. Candeal and E. Indurain, Utility functions on chains, J. Math. Econom. 22 (1993), no. 2, 161–168 https://doi.org/10.1016/0304-4068(93)90045-M
- J. C. Candeal and E. Indurain, Lexicographic behaviour of chains, Arch. Math. (Basel) 72 (1999), no. 2, 145–152 https://doi.org/10.1007/s000130050315
- J. C. Candeal, E. Indurain, and G. B. Mehta, Further remarks on totally ordered representable subsets of Euclidean space, J. Math. Econom. 25 (1996), no. 4, 381–390 https://doi.org/10.1016/0304-4068(95)00734-2
- J. C. Candeal, E. Indurain, and G. B. Mehta, Order preserving functions on ordered topological vector spaces, Bull. Austral. Math. Soc. 60 (1999), no. 1, 55–65 https://doi.org/10.1017/S0004972700033323
- R. Engelking, Outline of General Topology, Translated from the Polish by K. Sieklucki North-Holland Publishing Co., Amsterdam; PWN-Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York 1968
- M. Estevez and C. Herves, On the existence of continuous preference orderings without utility representations, J. Math. Econom. 24 (1995), no. 4, 305–309 https://doi.org/10.1016/0304-4068(94)00701-B
- A. Giarlotta, Representable lexicographic products, Order 21 (2004), no. 1, 29–41 https://doi.org/10.1007/s11083-004-9308-3
- A. Giarlotta, The representability number of a chain, Topology Appl. 150 (2005), no. 1-3, 157–177 https://doi.org/10.1016/j.topol.2004.05.016
- G. Herden and A. Pallack, Useful topologies and separable systems, Appl. Gen. Topol. 1 (2000), no. 1, 61–82
- R. Isler, Semicontinuous utility functions in topological spaces, Riv. Mat. Sci. Econom. Social. 20 (1997), no. 1, 111–116 https://doi.org/10.1007/BF02688992
- A. Mas-Colell, Papers presented at the Colloquium on Mathematical Economics, J. Math. Econom. 2 (1975), no. 2, 263–295 https://doi.org/10.1016/0304-4068(75)90028-2
- A. Mas-Colell and W. R. Zame, Equilibrium theory in infinite-dimensional spaces, Handbook of mathematical economics, Vol. IV, 1835–1898, Handbooks in Econom., 1, North-Holland, Amsterdam, 1991
- P. K. Monteiro, Some results on the existence of utility functions on path connected space, J. Math. Econom. 16 (1987), no. 2, 147–156 https://doi.org/10.1016/0304-4068(87)90004-8
- A. J. Ostaszewski, On the descriptive set theory of the lexicographic square, Fund. Math. 87 (1975), no. 3, 261–281 https://doi.org/10.4064/fm-87-3-261-281
- T. Rader, The existence of a utility function to represent preferences, Review of Economic Studies 30 (1963), 229–232 https://doi.org/10.2307/2296323
- S. Romaguera and M. Sanchis, Applications of utility functions defined on quasi-metric spaces, J. Math. Anal. Appl. 283 (2003), no. 1, 219–235 https://doi.org/10.1016/S0022-247X(03)00285-3
- L. A. Steen and J. A. Seebach Jr., Counterexamples in Topology, Dover, New York, 1978
- G. Yi, Continuous extension of preferences, J. Math. Econom. 22 (1993), no. 6, 547–555 https://doi.org/10.1016/0304-4068(93)90003-4
Cited by
- Continuous Representability of Interval Orders: The Topological Compatibility Setting vol.23, pp.03, 2015, https://doi.org/10.1142/s0218488515500142
- CONTINUOUS ORDER REPRESENTABILITY PROPERTIES OF TOPOLOGICAL SPACES AND ALGEBRAIC STRUCTURES vol.49, pp.3, 2012, https://doi.org/10.4134/JKMS.2012.49.3.449