DOI QR코드

DOI QR Code

Effect of Microporous Structure of Al2O3/PVdF_HFP Ceramic Coating Layers on Thermal Stability and Electrochemical Performance of Composite Separators for Lithium-Ion Batteries

Al2O3/PVdF_HFP 세라믹코팅층의 미세기공구조가 리튬이차전지용 복합분리막의 열 안정성 및 전기화학특성에 미치는 영향

  • Published : 2009.11.30

Abstract

The internal short-circuit between cathodes and anodes has been known to be a critical concern for the safety failures of lithium-ion batteries, which is strongly influenced by the thermal stability of separators. In this study, to effectively suppress the internal short-circuit failures, we developed a new composite separator with the improved thermal stability compared to conventional polyolefin-based separators. The composite separators were prepared by introducing a ceramic coating layer ($Al_2O_3$/PVdF-HFP) onto both sides of a polyethylene (PE) separator. The microporous structure of ceramic coating layers is determined by controlling the phase inversion of coating solutions and becomes more developed with the increase of nonsolvent (water) content. This structural change of ceramic coating layers was observed to greatly affect the thermal stability as well as the electrochemical performance of composite separators, which was systematically discussed in terms of phase inversion.

양극 (cathodes)과 음극 (anodes)이 서로 물리적으로 닿게되는 내부 단락 (internal short-circuit) 현상은 리튬이차전지 안전성 (safety) 이슈의 주요 원인으로 고려되고 있으며, 분리막 (separators)의 열 안정성 (thermal stability)에 의해 크게 영향을 받는 것으로 알려져 있다. 본 연구에서는 기존 폴리올레핀 (polyolefin) 계열 분리막에 비해 열 안정성이 현저히 개선된 세라믹 복합막 구조의 신규 분리막을 개발하여, 전지 내부 단락 발생을 억제하고자 하였다. 본 연구의 복합분리막은 알루미나 ($Al_2O_3$) 나노입자와 PVdF-HFP (polyvinylidene fluoride-hexafluoropropylene) 바인더로 구성된 세라믹 코팅층을, 폴리에틸렌 (polyethylene, PE) 분리막 양면에 도입시킴으로써 제조되었다. 세라믹 코팅층의 모폴로지는 코팅용액의 상전이 (phase inversion) 현상 제어를 통해 결정되었으며, 비용매 (물) 함량이 증가함에 따라 기공크기 및 기공구조가 보다 더 발달되었다. 이러한 세라믹 코팅층의 기공구조 변화는 복합분리막의 열 안정성 및 전기화학특성에 큰 영향을끼치는 것으로 관찰되었으며, 이를 상전이 현상 관점에서 체계적으로 해석하였다.

Keywords

References

  1. P. G. Balakshrishnan, R. Ramesh, and T. P. Kumar, "Safety mechanisms in lithium-ion batteries", J. Power Sources, 155, 401 (2006) https://doi.org/10.1016/j.jpowsour.2005.12.002
  2. T. Hayes, "Root cause for failures in Li-ion batteries", 24th International Battery Seminar & Exhibit (2007), Florida
  3. Y. E. Hyung, D. R. Vissers, and K. Amine, "Flame-retardant additives for lithium ion batteries", J. Power Sources, 119, 383 (2003) https://doi.org/10.1016/S0378-7753(03)00225-8
  4. J. P. Cho, Y. W. Kim, B. S. Kim, J. G. Lee, and B. W. Park, "A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with $AIPO_{4}$ Nanoparticles", Angew. Chem. Int. Ed., 42, 1618 (2003) https://doi.org/10.1002/anie.200250452
  5. H. F. Xiang, Q. Y. Jin, C. H. Chen, X. W. Ge, S. Guo, and J. H. Sun, "Dimethylmethylphosphonate-based nonflammable electrolyte and high safety lithium-ion batteries", J. Power Sources, 174, 335 (2007) https://doi.org/10.1016/j.jpowsour.2007.09.025
  6. P. Arora and Z. Zhang, "Battery Separators", Chem. Rev., 104, 4419 (2004) https://doi.org/10.1021/cr020738u
  7. S. Y. Lee, S. Y. Park, and H. S. Song, "Lamellar Crystalline Structure of Hard Elastic HDPE Films and Its Influence on Microporous Membrane Formation", Polymer, 47, 3540 (2006) https://doi.org/10.1016/j.polymer.2006.03.070
  8. Y. B. Jeong and D.W. Kim, "The role of adhesive gelforming polymer coated on separator for rechargeable lithium metal polymer cells", Solid State Ionics, 176, 47 (2005) https://doi.org/10.1016/j.ssi.2004.03.007
  9. Y. M. Lee, N. S. Choi, J. A. Lee, W. H. Seol, K. Y. Cho, H. Y. Jung, J. W. Kim, and J. K. Park, "Electrochemical effect of coating layer on the separator based on PVdF and PE nonwoven matrix", J. Power Sources, 146, 431 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.047
  10. S. S. Zhang, K. Xu, and T. R. Jow, "An inorganic composite membrane as the separator of Li-ion batteries", J. Power Sources, 140, 361 (2005) https://doi.org/10.1016/j.jpowsour.2004.07.034
  11. T. Takemura, S. Aihara, K. Hamano, and H. Yoshiyasu, "A powder particle size effect on ceramic powder based separator for lithium rechargeable battery”, J. Power Sources, 146, 779 (2005) https://doi.org/10.1016/j.jpowsour.2005.03.159
  12. S. Augustin, V. Hennige, G. H$\ddot{o}$erpel, and C. Hying, "Ceramic but flexible : new ceramic membrane foils for fuel cells and batteries", Desalination, 146, 23 (2002) https://doi.org/10.1016/S0011-9164(02)00465-4
  13. Y. M. Lee, J. W. Kim, N. S. Choi, J. A. Lee, W. H. Seol, and J. K. Park, "Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries", J. Power Sources, 139, 235 (2005) https://doi.org/10.1016/j.jpowsour.2004.06.055
  14. K. M. Kim, N. G. Park, K. S. Ryu, and S. H. Chang, "Characteristics of PVdF-HFP$TIO_{2}$ composite membrane electrolytes prepared by phase inversion and conventional casting methods", Electrochim. Acta, 51, 5636 (2006) https://doi.org/10.1016/j.electacta.2006.02.038
  15. Y. J. Hwang, K. S. Nahm, T. P. Kumar, and A. M. Stepha, "Poly(vinylidene fluoride-hexafluoropropylene)-based membranes for lithium batteries", J. Membr. Sci., 310, 349 (2008) https://doi.org/10.1016/j.memsci.2007.11.006
  16. M. L. Yeow, Y. T. Liu, and K. Li, "Isothermal phase diagrams and phase-inversion behavior of poly(vinylidene fluoride) solvents additives water systems", J. Appl. Polym. Sci., 90, 2150 (2003) https://doi.org/10.1002/app.12846
  17. W. Pu, X. He, L. Wang, C. Jiang, and C. Wan, "Preparation of PVDF-HFP microporous membrane for Li-ion batteries by phase inversion", J. Membr. Sci., 272, 11 (2006) https://doi.org/10.1016/j.memsci.2005.12.038

Cited by

  1. A Study on the Improvement of the Thermal Stability of PE Separator for Lithium Secondary Battery Application Using Poly(meta-phenylene isophthalamide) vol.37, pp.1, 2013, https://doi.org/10.7317/pk.2013.37.1.22