Stamping-assisted Fabrication Technique of the Bidirectional Alignment Layer for Wide-Viewing Twisted-Nematic Liquid Crystal Displays

  • Koo, Kyung-Mo (School of Electrical Engineering, Seoul National University) ;
  • Na, Jun-Hee (School of Electrical Engineering, Seoul National University) ;
  • Kim, Yeun-Tae (School of Electrical Engineering, Seoul National University) ;
  • Li, Hongmei (School of Electrical Engineering, Seoul National University) ;
  • Lee, Sin-Doo (School of Electrical Engineering, Seoul National University)
  • Published : 2009.12.31

Abstract

A stamping-assisted rubbing technique for generating bidirectional alignment in the fabrication of wide-viewing twistednematic (TN) liquid crystal displays (LCDs) was developed. A patterned layer of a fluorinated acrylate polymer was transferred onto the first rubbed alignment layer prepared on a substrate by stamping. The fluorinated acrylate polymer provides a protective layer that covers the first alignment layer during the second rubbing process to facilitate the bidirectional alignment of the LC molecules. The LC cell in the twisted geometry with two bidirectional-alignment layers showed stable electro-optic properties and wide-viewing characteristics. The stamping-assisted rubbing technique serves as a mask-free alignment method of producing multidomains for wide-viewing LCDs.

Keywords

References

  1. S. S. Kim, B. H. You, N. D. Kim and B. H. Berkeley, J. Soc. Info. Display 16, 403 (2008) https://doi.org/10.1889/1.2896317
  2. A. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, SID'98 Dig. (1998), p. 1077
  3. J.-H. Park, Y. Choi, T.-Y. Yoon, C.-J. Yu, and S.-D. Lee, J. Soc. Info. Display 11, 283 (2003) https://doi.org/10.1889/1.1825654
  4. H. Mori and P. J. Bos, SID'98 Dig. (1998), p. 830
  5. J. Chen, P. J. Bos, D. R. Bryant, D. L. Johnson, S. H. Jamal, and J. R. Kelly, Appl. Phys. Lett. 67, 1990 (1995) https://doi.org/10.1063/1.114763
  6. A. Lien, R. A. John, M. Angelopoulos, and K. W. Lee, Appl. Phys. Lett. 67, 21 (1995)
  7. M. Oh-e and K. Kondo, Appl. Phys. Lett. 67, 3895 (1995) https://doi.org/10.1063/1.115309
  8. S. H. Lee, S. L. Lee, and H. Y. Kim, Appl. Phys. Lett. 73, 2881 (1998) https://doi.org/10.1063/1.122617
  9. H. C. Jin, I. B. Kang, E. S. Jang, H. M. Moon, C. H. Oh, S. H. Lee, and S. D. Yeo, J. Soc. Info. Display 15, 277 (2007) https://doi.org/10.1889/1.2739795
  10. W. Choi, M.-H. Kim, Y.-J. Na, K. Koo, and S.-D. Lee, IMID'09 Dig. (2009), p. 755
  11. M. Schadt, H. Seiberle, and A. Schuster, Nature 381, 212 (1996) https://doi.org/10.1038/381212a0
  12. M. E. Becker, R. A. Kilian, B. Kosmowski, and D. A. Mlynski, Mol. Cryst. Liq. Cryst. 132, 167 (1986) https://doi.org/10.1080/00268948608079537