Temperature Dependence of the Electro-optic Characteristics in the Liquid Crystal Display Switching Modes

  • Jeon, Eun-Jeong (Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University) ;
  • Srivastava, Anoop Kumar (Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University) ;
  • Kim, Mi-Young (Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University) ;
  • Jeong, Kwang-Un (Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University) ;
  • Choi, Jeong-Min (Department of Electronics Engineering, Dong-A University) ;
  • Lee, Gi-Dong (Department of Electronics Engineering, Dong-A University) ;
  • Lee, Seung-Hee (Polymer Fusion Research Center, Department of Polymer-Nano Science and Engineering, Chonbuk National University)
  • Published : 2009.12.31

Abstract

As the physical properties of nematic liquid crystals vary with respect to temperature, the performances of liquid crystal displays (LCDs) are highly dependent on temperature. Additionally, it is well known that the electro-optic characteristics of LCDs, such as transmittance and threshold voltage, also rely on the LCD switching modes. The temperature dependence of the electro-optic characteristics of the wide-viewing-angle LCD modes, such as in-plane switching (IPS), multidomain vertical alignment by patterned electrode (PVA), and fringe-field switching (FFS), have been studied, and the results showed that the FFS mode has lower temperature dependence compared to the IPS and PVA modes. Since the liquid crystal (LC) reorients in different ways in each mode, this result is associated with the temperature dependence of LC's bend and twist elastic constants, and also with the position of the main reorientation, either in the middle or on the surface of the LC layer.

Keywords

References

  1. M. Oh-E and K. Kondo, Appl. Phys. Lett. 67, 3895 (1995) https://doi.org/10.1063/1.115309
  2. K. Kondo, S. Matsuyama, N. Konishi and H. Kawakami, in Proc. SID Tech. Digest. (1998), p. 371
  3. S. H. Lee, S. L. Lee, and H. Y. Kim, Appl. Phys. Lett. 73, 2881 (1998) https://doi.org/10.1063/1.122617
  4. S. H. Lee, S. L. Lee, H. Y. Kim, T. Y. Eom, in Proc. SID Tech. Digest. (1999), p. 202
  5. Takeda, S. Kataoka, T. Sasaki, H. Chida, H. Tsuda, K. Ohmuro, T. Sasabayashi, Y. Koike, and K. Okamoto, in Proc. SID Tech. Digest. (1998), p. 1077
  6. K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, in Proc. The 18th International Display Research Conference. (1998), p. 383
  7. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G-D. Lee, J-J. Lyu and K. H. Kim, Appl. Phys. Lett. 90, 261910 (2007) https://doi.org/10.1063/1.2752105
  8. Y. Yin, S. V. Shiyanovskii, and O. D. Lavrentovich, J. Appl. Phys. 100, 024906 (2006) https://doi.org/10.1063/1.2214466
  9. H. Ma, H. Okada, S. Sugimori, H. Onnagawa, and K. Toriyama, Jpn. J. Appl. Phys. 43, 6234 (2004) https://doi.org/10.1143/JJAP.43.6234
  10. K. Ikeda, H. Okada, H. Onnagawa and S. Sugimori, J. Appl. Phys. 86, 5413 (1999) https://doi.org/10.1063/1.371539
  11. M. S. Kim, Y. H. Jung, S. M. Seen, H. Y. Kim, S. Y. Kim, Y. J. Lim and S. H. Lee, Jpn. J. Appl. Phys. 44, 3121 (2005) https://doi.org/10.1143/JJAP.44.3121
  12. R. Tarao, H. Saito, S. Sawada, Y. Goto, in Proc. SID Tech. Digest. (1994), p. 223
  13. J. W. Park, Y. J. Ahn, J. H. Jung, and S. H. Lee, Appl. Phys. Lett. 93, 081103 (2008) https://doi.org/10.1063/1.2973152
  14. H. Y. Kim, S-H. Nam, and S. H. Lee, Jpn. J. Appl. Phys. 42, 2752 (2003) https://doi.org/10.1143/JJAP.42.2752
  15. S. J. Kim, H. Y. Kim, S. H. Lee, Y. K. Lee, K. C. Park, and J. Jang, Jpn. J. Appl. Phys. 44, 6581 (2005) https://doi.org/10.1143/JJAP.44.6581
  16. G-D. Lee, J-H. Son, Y-H. Choi, J-J. Lyu, K-H. Kim, and S. H. Lee, Appl. Phys. Lett. 90, 033509 (2007) https://doi.org/10.1063/1.2432251
  17. P. J. Collings, Liquid Crystals : nature’s delicate phase of matter (Princeton University Press, Ltd., 1990), Ch. 3
  18. J. F. Str$\"{o}$mer, E. P. Raynes and V. Brown, Appl. Phys. Lett. 88, 033509 (2006) https://doi.org/10.1063/1.2164901
  19. P. D. Brimicombe, C. Kischka, S. J. Elston, and E. P. Raynes J. Appl. Phys. 101, 043108 (2007) https://doi.org/10.1063/1.2432311
  20. B. Bahadur, Liquid Crystals-Application and uses (World Scientific Pub Co Inc., 1990), p.165
  21. A. K. Singh, R. Manohar, J.P. Shukla, and A.M Biradar, J. Phys. Journal of Physics and Chemistry of Solids 66, 1183 (2005) https://doi.org/10.1016/j.jpcs.2005.02.013
  22. R. Manohar, A. K. Srivastava, Jyotishman, J. P. Shukla, A. K. Prajapati, and N. L. Bonde, Int. J. Phys. Sci. 1, 147 (2006)
  23. David A. Dalzarini, Phys. Rev. Lett., 25, 914 (1970) https://doi.org/10.1103/PhysRevLett.25.914