References
- Bierhans, A., Hofmann, M. A., Ziegler, R. and Nawroth, P. P. (1998) AGEs and their interaction with AGE-receptor in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc. Res. 37: 586-600 https://doi.org/10.1016/S0008-6363(97)00233-2
- Singh, R., Barden, A., Mari, T. and Beilin, L. (2001) Advanced glycation end-products; a review. Diabetologia 44: 129-146 https://doi.org/10.1007/s001250051591
- Brownlee, M. (2005) The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615–1625 https://doi.org/10.2337/diabetes.54.6.1615
- Ahmed, N. (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67: 3-21 https://doi.org/10.1016/j.diabres.2004.09.004
- Huebschmann, A. G., Vlassara, H., Regensteiner, J. G. and Reusch, J. E. B. (2006) Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432 https://doi.org/10.2337/dc05-2096
- Desai, K. and Wu, L. (2007) Methylglyoxal and Advanced glycation end products: new therapeutic horizons? Recent Pat. Cardiovasc. Drug Discov. 2: 89-99 https://doi.org/10.2174/157489007780832498
- Peyroux, J. and Sternberg, M. (2006) Advanced glycation end products (AGEs): pharmacological inhibition in diabetes. Pathol. Biol. 54: 405-419 https://doi.org/10.1016/j.patbio.2006.07.006
- Wada, R. and Yagihashi, S. (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann. N. Y. Acad. Sci. 1043: 598-604 https://doi.org/10.1196/annals.1338.067
- Fosmark, D. S., Torjesen, P. A., Kilhovd, B. K., Beng, T. J., Sandvik, L., Hanssen, K. F., Agardh, C. D. and Agardh, E. (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are assodiated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55: 232-236 https://doi.org/10.1016/j.metabol.2005.08.017
- Foebes, M. J., Yee, L.T., Thallas, V., Lassila, M., Candido, R., Jandeleit-Dahm, K. A., Thomas, M. C., Burns, W. C., Deemer, E. K., Thorpe, S. M., Cooper, M. E. and Allen, T. J. (2004) Advanced glycation endproduct interventions reduce diabetes-accelerated atherosclerosis. Diabetes 53: 1813-1823 https://doi.org/10.2337/diabetes.53.7.1813
- Oturai, P. S., Christensen, M., Rolin, B., Pedersen, K. E., Mortensen, S. B. and Boel, E. (2002) Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metabolism 49: 996-1000 https://doi.org/10.1053/meta.2000.7731
- Nakmura, S., Makita, Z., Ishikawa, S., Yasumura, K., Fujii, W., Yanagisawa, K., Kawata, T. and Koike, T. (1997) Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46: 895-899 https://doi.org/10.2337/diabetes.46.5.895
- Edelstein, D. and Brownlee, M., (1992) Mechanistic studies of advanced glycosylation endproduct inhibition by aminoguanidine. Diabetes 41: 26-29 https://doi.org/10.2337/diabetes.41.1.26
- Stitt, A., Gardiner, T. A., Anderson, L., Canning, P., Frizzell, N., Duffy, N., Boyle, C., Januszewski, S. A., Chachich, M., Baynes, J. W. and Thorpe, S. R. (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832 https://doi.org/10.2337/diabetes.51.9.2826
- Figarola, J. L., Scott, S., Loera, S., Tessler, C., Chu, P., Weiss, L. Hardy, J. and Rahbar, S. LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. (2003) Diabetologia 46: 1140-1152 https://doi.org/10.1007/s00125-003-1162-0
- Doggrell, S. A. (2001) ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin. Investig. Drugs 10: 981-983 https://doi.org/10.1517/13543784.10.5.981
- Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P. and Cerami, A. (1986) Aminoguanidine prevents diabetesinduced arterial wall protein cross-linking. Science 232: 1629-32 https://doi.org/10.1126/science.3487117
- Jung, H. A., Yoon, N. Y., Kang, S. S., Kim, Y. S. and Choi, J. S. (2008) Inhibitory activities of prenylated flavonoid from sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol 60: 1227-1236 https://doi.org/10.1211/jpp.60.9.0016
- Yokozawa, T., Nakagawa, T. and Terasawa, K. (2001) Effects of oriental medicines on the production of advanced glycation end products. J. Traditional Medicines 18: 107-112
- Jang, D. S., Lee, Y. M., Kim, Y. S. and Kim, J. S. (2006) Screening of Korean traditional herbal medicine with inhibitory activity on advanced glycation end products (AGEs) formation. Kor. J. Pharmacogn. 37: 45-52
- Lee, Y. M., Kim, Y. S., Kim, J. M., Jang, D. S., Kim, J. H., Yoo, J. L. and Kim, J. S. (2008) Screening of Korean traditional herbal medicine with inhibitory activity on advanced glycation end products (AGEs) formation (II). Kor. J. Pharmacogn. 39: 223-227
- Vinson, J. A. and Howard, T. B. (1996) Inhibition of protein glycation and advanced glycation endproducts by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 7: 659-663 https://doi.org/10.1016/S0955-2863(96)00128-3
- Choi, Y. H., Kim, J. H., Kim, M. J., Han, S. S. and Rim, Y. S. (2000) Antioxidative compounds in leaves of Castanea Crenata S. et Z. Korean J. Medicinal Crop Sci. 8: 373-377
- Park, W. Y. (1996) Phenolic compounds from Acer ginnala Maxim. Pharmacogn. 27: 212-218
- Song, C. Q., Zhang, N., Xu, R. S., Song, G. Q., Sheng, Y. and Hong, S. H. (1982) Studies on the antibacterial constituents of the leaves of Acer ginnala maxim. II. isolation and identification of ginnalin B. ginnalin C and other six compounds. Huaxue Xuebao 40: 1142-1147
- Matsuda, H., Wang, T., Managi, H and Yoshikawa, M. (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem. 11: 5317-5323 https://doi.org/10.1016/j.bmc.2003.09.045
- Nakgawa, T., Yokozawa, T., Kim, Y. A., Kang, K. S. and Tanaka, T. (2005) Activity of wen-pi-tang, and purified constituents of rhei rhizome and glycyrrhizae radix against glucose-mediated protein damage. Am. J. Chin. Med. 33: 817-829 https://doi.org/10.1142/S0192415X05003375
- Kim, J. M., Jang, D. S., Lee, Y. M., Yoo, J. L., Kim, Y. S., Kim, J. H. and Kim, J. S. (2008) Aldose-reductase- and protein-glycation-inhibitory principles from the whole plant of Duchesnea chrysantha. Chem. Biodivers. 5: 352-356 https://doi.org/10.1002/cbdv.200890034
- Kim, D. W., Son, K. H., Chang, H. W., Bae, K. H., Kang, S. S. and Kim. H. P. (2004) Anti-inflammatory activity of Sedum kamtshaticum. J. Ethnopharmacol. 90: 409-414 https://doi.org/10.1016/j.jep.2003.11.005