Screening of Korean Herbal Medicines with Inhibitory Activity on Advanced Glycation End Products (AGEs) Formation (III)

한국약용식물의 최종당화산물 생성저해활성 검색 (III)

  • Jeong, Il-Ha (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM)) ;
  • Kim, Jong-Min (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM)) ;
  • Jang, Dae-Sik (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM)) ;
  • Kim, Joo-Hwan (Department of Life Science, Kyungwon University) ;
  • Cho, Jung-Hee (Jeonnam Development Institute for Korea Traditional Medicine) ;
  • Kim, Jin-Sook (Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM))
  • 정일하 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김종민 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 장대식 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터) ;
  • 김주환 (경원대학교 생명과학과) ;
  • 조정희 (전라남도 한방산업진흥원) ;
  • 김진숙 (한국한의학연구원 한의융합연구본부 당뇨합병증연구센터)
  • Published : 2009.12.31

Abstract

Enhanced formation and accumulation of advanced glycation end products (AGEs) have been implicated as a major pathogenesis process leading to diabetic complications, normal aging, atherosclerosis and Alzheimer's disease. In our ongoing project to discover novel treatments for diabetic complications from natural sources, we have investigated on the inhibitory activity of 67 ethanol extracts from 57 Korean herbal medicines against the formation of AGEs in vitro. Of these, 22 extracts were found to have a significant AGEs inhibitory activity ($IC_{50}$<50 ${\mu}g$/ml) compared with aminoguanidine ($IC_{50}$=75.98 ${\mu}g$/ml). Particularly, 6 extracts from 3 herbal medicines, Castanea crenata (flower, leaf, bark-twig), Acer tatarium subsp. ginnala (fruit) and Sapium japonicum (leaf, twig) showed (approximately 8-17 fold) stronger inhibitory activity than that of aminoguanidine.

Keywords

References

  1. Bierhans, A., Hofmann, M. A., Ziegler, R. and Nawroth, P. P. (1998) AGEs and their interaction with AGE-receptor in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc. Res. 37: 586-600 https://doi.org/10.1016/S0008-6363(97)00233-2
  2. Singh, R., Barden, A., Mari, T. and Beilin, L. (2001) Advanced glycation end-products; a review. Diabetologia 44: 129-146 https://doi.org/10.1007/s001250051591
  3. Brownlee, M. (2005) The pathobiology of diabetic complications: A unifying mechanism. Diabetes 54: 1615–1625 https://doi.org/10.2337/diabetes.54.6.1615
  4. Ahmed, N. (2005) Advanced glycation endproducts-role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67: 3-21 https://doi.org/10.1016/j.diabres.2004.09.004
  5. Huebschmann, A. G., Vlassara, H., Regensteiner, J. G. and Reusch, J. E. B. (2006) Diabetes and advanced glycoxidation end products. Diabetes Care 29: 1420-1432 https://doi.org/10.2337/dc05-2096
  6. Desai, K. and Wu, L. (2007) Methylglyoxal and Advanced glycation end products: new therapeutic horizons? Recent Pat. Cardiovasc. Drug Discov. 2: 89-99 https://doi.org/10.2174/157489007780832498
  7. Peyroux, J. and Sternberg, M. (2006) Advanced glycation end products (AGEs): pharmacological inhibition in diabetes. Pathol. Biol. 54: 405-419 https://doi.org/10.1016/j.patbio.2006.07.006
  8. Wada, R. and Yagihashi, S. (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann. N. Y. Acad. Sci. 1043: 598-604 https://doi.org/10.1196/annals.1338.067
  9. Fosmark, D. S., Torjesen, P. A., Kilhovd, B. K., Beng, T. J., Sandvik, L., Hanssen, K. F., Agardh, C. D. and Agardh, E. (2006) Increased serum levels of the specific advanced glycation end product methylglyoxal-derived hydroimidazolone are assodiated with retinopathy in patients with type 2 diabetes mellitus. Metabolism 55: 232-236 https://doi.org/10.1016/j.metabol.2005.08.017
  10. Foebes, M. J., Yee, L.T., Thallas, V., Lassila, M., Candido, R., Jandeleit-Dahm, K. A., Thomas, M. C., Burns, W. C., Deemer, E. K., Thorpe, S. M., Cooper, M. E. and Allen, T. J. (2004) Advanced glycation endproduct interventions reduce diabetes-accelerated atherosclerosis. Diabetes 53: 1813-1823 https://doi.org/10.2337/diabetes.53.7.1813
  11. Oturai, P. S., Christensen, M., Rolin, B., Pedersen, K. E., Mortensen, S. B. and Boel, E. (2002) Effects of advanced glycation end-product inhibition and cross-link breakage in diabetic rats. Metabolism 49: 996-1000 https://doi.org/10.1053/meta.2000.7731
  12. Nakmura, S., Makita, Z., Ishikawa, S., Yasumura, K., Fujii, W., Yanagisawa, K., Kawata, T. and Koike, T. (1997) Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes 46: 895-899 https://doi.org/10.2337/diabetes.46.5.895
  13. Edelstein, D. and Brownlee, M., (1992) Mechanistic studies of advanced glycosylation endproduct inhibition by aminoguanidine. Diabetes 41: 26-29 https://doi.org/10.2337/diabetes.41.1.26
  14. Stitt, A., Gardiner, T. A., Anderson, L., Canning, P., Frizzell, N., Duffy, N., Boyle, C., Januszewski, S. A., Chachich, M., Baynes, J. W. and Thorpe, S. R. (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51: 2826-2832 https://doi.org/10.2337/diabetes.51.9.2826
  15. Figarola, J. L., Scott, S., Loera, S., Tessler, C., Chu, P., Weiss, L. Hardy, J. and Rahbar, S. LR-90 a new advanced glycation endproduct inhibitor prevents progression of diabetic nephropathy in streptozotocin-diabetic rats. (2003) Diabetologia 46: 1140-1152 https://doi.org/10.1007/s00125-003-1162-0
  16. Doggrell, S. A. (2001) ALT-711 decreases cardiovascular stiffness and has potential in diabetes, hypertension and heart failure. Expert Opin. Investig. Drugs 10: 981-983 https://doi.org/10.1517/13543784.10.5.981
  17. Brownlee, M., Vlassara, H., Kooney, A., Ulrich, P. and Cerami, A. (1986) Aminoguanidine prevents diabetesinduced arterial wall protein cross-linking. Science 232: 1629-32 https://doi.org/10.1126/science.3487117
  18. Jung, H. A., Yoon, N. Y., Kang, S. S., Kim, Y. S. and Choi, J. S. (2008) Inhibitory activities of prenylated flavonoid from sophora flavescens against aldose reductase and generation of advanced glycation endproducts. J. Pharm. Pharmacol 60: 1227-1236 https://doi.org/10.1211/jpp.60.9.0016
  19. Yokozawa, T., Nakagawa, T. and Terasawa, K. (2001) Effects of oriental medicines on the production of advanced glycation end products. J. Traditional Medicines 18: 107-112
  20. Jang, D. S., Lee, Y. M., Kim, Y. S. and Kim, J. S. (2006) Screening of Korean traditional herbal medicine with inhibitory activity on advanced glycation end products (AGEs) formation. Kor. J. Pharmacogn. 37: 45-52
  21. Lee, Y. M., Kim, Y. S., Kim, J. M., Jang, D. S., Kim, J. H., Yoo, J. L. and Kim, J. S. (2008) Screening of Korean traditional herbal medicine with inhibitory activity on advanced glycation end products (AGEs) formation (II). Kor. J. Pharmacogn. 39: 223-227
  22. Vinson, J. A. and Howard, T. B. (1996) Inhibition of protein glycation and advanced glycation endproducts by ascorbic acid and other vitamins and nutrients. J. Nutr. Biochem. 7: 659-663 https://doi.org/10.1016/S0955-2863(96)00128-3
  23. Choi, Y. H., Kim, J. H., Kim, M. J., Han, S. S. and Rim, Y. S. (2000) Antioxidative compounds in leaves of Castanea Crenata S. et Z. Korean J. Medicinal Crop Sci. 8: 373-377
  24. Park, W. Y. (1996) Phenolic compounds from Acer ginnala Maxim. Pharmacogn. 27: 212-218
  25. Song, C. Q., Zhang, N., Xu, R. S., Song, G. Q., Sheng, Y. and Hong, S. H. (1982) Studies on the antibacterial constituents of the leaves of Acer ginnala maxim. II. isolation and identification of ginnalin B. ginnalin C and other six compounds. Huaxue Xuebao 40: 1142-1147
  26. Matsuda, H., Wang, T., Managi, H and Yoshikawa, M. (2003) Structural requirements of flavonoids for inhibition of protein glycation and radical scavenging activities. Bioorg. Med. Chem. 11: 5317-5323 https://doi.org/10.1016/j.bmc.2003.09.045
  27. Nakgawa, T., Yokozawa, T., Kim, Y. A., Kang, K. S. and Tanaka, T. (2005) Activity of wen-pi-tang, and purified constituents of rhei rhizome and glycyrrhizae radix against glucose-mediated protein damage. Am. J. Chin. Med. 33: 817-829 https://doi.org/10.1142/S0192415X05003375
  28. Kim, J. M., Jang, D. S., Lee, Y. M., Yoo, J. L., Kim, Y. S., Kim, J. H. and Kim, J. S. (2008) Aldose-reductase- and protein-glycation-inhibitory principles from the whole plant of Duchesnea chrysantha. Chem. Biodivers. 5: 352-356 https://doi.org/10.1002/cbdv.200890034
  29. Kim, D. W., Son, K. H., Chang, H. W., Bae, K. H., Kang, S. S. and Kim. H. P. (2004) Anti-inflammatory activity of Sedum kamtshaticum. J. Ethnopharmacol. 90: 409-414 https://doi.org/10.1016/j.jep.2003.11.005