DOI QR코드

DOI QR Code

The Fruits of Crataegus pinnatifida Bunge ameliorates Learning and Memory Impairments Induced by Scopolamine

기억력 감퇴모델에서 산사의 기억력 개선 효과에 관한 연구

  • Wang, Su-Bin (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Ahn, Eun-Mi (Department of Herbal Foodceutical Science, Daegu Haany University) ;
  • Jung, Ji-Wook (Department of Herbal Medicinal Pharmacology, Daegu Haany University)
  • 왕수빈 (대구한의대학교 한약재약리학과) ;
  • 안은미 (대구한의대학교 한방식품약리학과) ;
  • 정지욱 (대구한의대학교 한약재약리학과)
  • Published : 2009.12.30

Abstract

Objectives : In the present study, we assessed the effects of the ethanolic extract of Crataegus pinnatifida Bunge on the learning and memory impairments induced by scopolamine using the passive avoidance and the Morris water maze tasks in mice. Methods : The cognition-enhancing effect of C. pinnatifida was investigated using a passive avoidance test, the Morris water maze test and Y-maze test in mice. Drug-induced amnesia was induced by treating animals with scopolamine (1 mg/kg, i.p.). Results : The ethanolic extract of C. pinnatifida (100, and 200 mg/kg) significantly reversed the scopolamine-induced cognitive impairments in the passive avoidance test (p < 0.05). Moreover, C. pinnatifida (200 mg/kg) also improved escape latencies in training trials and increased swimming times and distances within the target zone of the Morris water maze (p < 0.05). On the Y-maze test, C. pinnatifida (100, and 200 mg/kg) also significantly reversed scopolamine- induced cognitive impairments in mice (p < 0.05). Conclusions : The ethanolic extract of Crataegus pinnatifida dramatically possesses the anti-amnestic and cognitive-enhancing activities related to the memory processes, and these activities were parallel to treatment duration and dependent on the learning models.

Keywords

References

  1. 오세관. 신경전달물질과 뇌질환. 서울 : 신일상사. 2005 : 345-64.
  2. Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004 ; 82(3) : 171-7. https://doi.org/10.1016/j.nlm.2004.06.005
  3. Ebert U, Kirch W. Scopolamine model of dementia: electroencephalogram findings and cognitive performance. Eur J Clin Invest. 1998 ; 28(11) : 944-9 https://doi.org/10.1046/j.1365-2362.1998.00393.x
  4. 한방약리학 교재편찬위원회. 한방약리학. 서울 : 신일상사. 2005 : 29-41.
  5. 서부일, 이제현, 최호영, 권동렬, 부영민. 한약본초학. 서울 : 영림사. 2004 : 498-50.
  6. Wang JM. Chinese Herbal Pharmacology. Shanghai : Shanghai Science & Technology Publisher. 1985 : 67-8.
  7. Benli M, Yigit N, Geven F, Güney K, Bingol U. Antimicrobial activity of endemic Crataegus tanacetifolia (Lam.) Pers and observation of the inhibition effect on bacterial cells. Cell Biochem Funct. 2008 ; 26(8) : 844-51. https://doi.org/10.1002/cbf.1515
  8. Kang I, Cha J, Lee S, Kim H, Kwon S, Ham I, Hwang B, Whang W. Isolation of Anti-oxidant from Domestic Crataegus pinnatifida Bunge Leaves. Kor. J. Pharmacogn. 2005 ; 36(2) : 121-8.
  9. Giacobini E. From molecular structure to Alzheimer therapy. Jpn J Pharmacol. 1997 ; 74(3) : 225-41. https://doi.org/10.1254/jjp.74.225
  10. Giacobini E. Present and future of Alzheimer therapy. J Neural Transm Suppl. 2000 ; 59 : 231-42.
  11. LeDoux JE. Emotional memory system in the brain. Behav Brain Res. 1993 ; 20 ; 58(1-2) : 69-79. https://doi.org/10.1016/0166-4328(86)90107-5
  12. LeDoux JE. Emotional memory: in search of systems and synapses. Ann N Y Acad Sci. 1993 ; 702 : 149-57 https://doi.org/10.1111/j.1749-6632.1993.tb17246.x
  13. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984 ; 11(1) : 47-60. https://doi.org/10.1016/0165-0270(84)90007-4
  14. Sarter M, Bodewitz G, Stephens DN. Attenuation of scopolamine–induced impairment of spontaneous alternation behavior by antagonist but not inverse agonist and beta–carboline. Psycopharmacology. 1998 ; 94(4) : 491-5. https://doi.org/10.1007/BF00212843
  15. 황의완, 김지혁. 동의정신의학, 서울 : 현대의학서적사. 1989 ; 605-6.
  16. Chi JF, Niu JZ, Xu SQ, Li J, Wang JF, Liu JP. Treatment of Alzheimer disease: an evidencebased review. Zhong Xi Yi Jie He Xue Bao. 2007 ; 5(3) : 247-54. https://doi.org/10.3736/jcim20070304
  17. Elango C, Jayachandaran KS, Niranjali Devaraj S. Hawthorn extract reduces infarct volume and improves neurological score by reducing oxidative stress in rat brain following middle cerebral artery occlusion. Int J Dev Neurosci. 2009 ; 27(8) : 799- 803. https://doi.org/10.1016/j.ijdevneu.2009.08.008
  18. Chang WT, Dao J, Shao ZH. Hawthorn: potential roles in cardiovascular disease. Am J Chin Med. 2005 ; 33(1) : 1-10. https://doi.org/10.1142/S0192415X05002606
  19. Shanthi S, Parasakthy K, Deepalakshmi PD, Devaraj SN. Hypolipidemic activity of tincture of Crataegus in rats. Indian J Biochem Biophys. 1994 ; 31(2) : 143-6.
  20. Walker AF, Marakis G, Simpson E, Hope JL, Robinson PA, Hassanein M, Simpson HC. Hypotensive effects of hawthorn for patients with diabetes taking prescription drugs: a randomised controlled trial. Br J Gen Pract. 2006 ; 56(527) : 437-43.
  21. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res Rev. 2003 ; 41 : 268-87. https://doi.org/10.1016/S0165-0173(02)00268-0
  22. Blokland A. Acetylcholine. a neurotransmitter for learning and memory. Brain research. Brain Res Rev. 1995 ; 21 : 285-300. https://doi.org/10.1016/0165-0173(95)00016-X
  23. Nobili L, Sannita WG. Cholinergic modulation, visual function and Alzheimer's dementia. Vision Res. 1997 ; 37(24) : 3559-71. https://doi.org/10.1016/S0042-6989(97)00076-X
  24. Giacobini E. From molecular structure to Alzheimer therapy. Jpn J Pharmacol. 1997 ; 74(3) : 225-41. https://doi.org/10.1254/jjp.74.225
  25. Giacobini E. Present and future of Alzheimer therapy. J Neural Transm Suppl. 2000 ; 59 : 231-42.
  26. Bachurin SO. Medicinal chemistry approaches for the treatment and prevention of Alzheimer's disease. Med Res Rev. 2003 ; 23(1) : 48-88. https://doi.org/10.1002/med.10026