High-Pressure Synthesis of $SmFeAsO_{1-x}F_x$(x=0.2) Single Crystals

$SmFeAsO_{1-x}F_x$(x=0.2)의 고압 단결정 합성

  • Lee, Hyun-Sook (Department of Physics, Pohang University of Science and Technology) ;
  • Park, Jae-Hyun (Department of Physics, Pohang University of Science and Technology) ;
  • Lee, Jae-Yeap (Department of Physics, Pohang University of Science and Technology) ;
  • Kim, Ju-Young (Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Cho, B.K. (Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Jung, Chang-Uk (Department of Physics, Hankuk University of Foreign Studies) ;
  • Lee, Hu-Jong (Department of Physics, Pohang University of Science and Technology)
  • Published : 2009.04.30

Abstract

Fluorine-doped $SmFeAsO_{1-x}F_x$ single crystals with the nominal value of x=0.2 were grown at $1350-1450^{\circ}C$ under the pressure of 3.3 GPa by using the self-flux method. Plate-shaped single crystals in the range of a few-150 ${\mu}m$ in their lateral size were obtained. The detailed crystal structure was analyzed by using the x-ray diffractometry. Superconducting transition temperature, determined by the resistive transition, of a single crystal was about 49 K with a narrow resistive transition width of ${\sim}1$ K. A relatively sharp transition, a low residual resistivity, and a large residual resistivity ratio compared with those reported for $REFeAsO_{1-x}F_x$(RE=Sm, Nd) single crystals indicate the high quality of our single crystals.

Keywords

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296-3297. (2008). https://doi.org/10.1021/ja800073m
  2. M. Rotter, M. Tegel, and D. Johrendt, Phys. Rev. Lett. 101, 107006 (2008). https://doi.org/10.1103/PhysRevLett.101.107006
  3. N. Ni et al., Phys. Rev. B 78, 014507 (2008). https://doi.org/10.1103/PhysRevB.78.014507
  4. K. Sasmal et al., Phys. Rev. Lett. 101, 107007 (2008). https://doi.org/10.1103/PhysRevLett.101.107007
  5. N. D. Zhigadlo et al., J. Phys.: Condens. Matter 20, 342202 (2008). https://doi.org/10.1088/0953-8984/20/34/342202
  6. R. Prozorov, M. E. Tillman, E. D. Mun, and P. C. Canfield, e-print arXiv:cond-mat/0805.2783.
  7. Y. Jia et al., Appl. Phys. Lett. 93, 032503 (2008). https://doi.org/10.1063/1.2963361
  8. J. Karpinski et al., arXiv: 0902.0224 [cond-mat] (2009).
  9. Y. Jia et al., Supercond. Sci. Tech. 2008, 21, 105018 (2008). https://doi.org/10.1088/0953-2048/21/10/105018
  10. L. Malone et al., arXiv:cond-mat/0806.3908 [condmat] (2008).
  11. P. Samuely et al., Supercond. Sci. Tech. 22 014003 (2009). https://doi.org/10.1088/0953-2048/22/1/014003
  12. C. Martin et al., arXiv:cond-mat/0807.0876 [condmat] (2008).
  13. T. Kondo et al., arXiv:cond-mat/0807.0815 [condmat] (2008).
  14. K. Haule, J. H. Shim, and G. Kotliar, Phys. Rev. Lett. 100, 2264022008 https://doi.org/10.1103/PhysRevLett.100.226402
  15. I. I. Mazin, D. J. Singh, M. D. Johannes, M. H. Du, Phys. Rev. Lett. 101, 057003 (2008). https://doi.org/10.1103/PhysRevLett.101.057003
  16. X. Dai, Z. Fang, Y. Zhou, and F. C. Zhang, Phys. Rev. Lett. 101, 057008 (2008). https://doi.org/10.1103/PhysRevLett.101.057008
  17. Kuroki K et al., Phys. Rev. Lett. 101, 087004 (2008). https://doi.org/10.1103/PhysRevLett.101.087004
  18. Q. Si, and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008). https://doi.org/10.1103/PhysRevLett.101.076401
  19. S. Margadonna et al., Phys. Rev. B 79, 014503 (2009). https://doi.org/10.1103/PhysRevB.79.014503
  20. L. Wang et al., Supercond. Sci. Tech. 22, 015019 (2009). https://doi.org/10.1088/0953-2048/22/1/015019