Reduced Complexity QRD-M Algorithm for Spatial Multiplexing MIMO-OFDM Systems

공간 다중화 MIMO-OFDM 시스템을 위한 복잡도 감소 QRD-M 알고리즘

  • 모하이센마나르 (인하대학교 정보통신대학원 이동통신연구실) ;
  • 안홍선 (인하대학교 정보통신대학원 이동통신연구실) ;
  • 장경희 (인하대학교 정보통신대학원 이동통신연구실)
  • Published : 2009.04.30

Abstract

Multiple-input multiple-output (MIMO) technology applied with orthogonal frequency division multiplexing (OFDM) is considered as the ultimate solution to increase channel capacity without any additional spectral resources. At the receiver side, the challenge resides in designing low complexity detection algorithms capable of separating independent streams sent simultaneously from different antennas. In this paper, we introduce an upper-lower bounded-complexity QRD-M algorithm (ULBC QRD-M). In the proposed algorithm we solve the problem of high extreme complexity of the conventional sphere decoding by fixing the upper bound complexity to that of the conventional QRD-M. On the other hand, ULBC QRD-M intelligently cancels all unnecessary hypotheses to achieve very low computational requirements. Analyses and simulation results show that the proposed algorithm achieves the performance of conventional QRD-M with only 26% of the required computations.

OFDM(Orthogonal Frequency Division Multiplexing)이 적용된 MIMO(Multiple-input Multiple-output) 기술은 추가적인 주파수 자원의 할당 없이 채널 용량을 증가시키기 위한 방법으로 주목 받고 있으나, MIMO-OFDM 수신단에서 다른 안테나로부터 동시에 전송된 독립적인 데이터 스트림을 분리할 수 있는 낮은 복잡도의 검출 알고리즘을 개발해야 하는 문제점이 있다. 이 논문에서 제안하는 ULBC QRD-M (Upper-Lower Bounded-Complexity QRD-M) 알고리즘은 최대 복잡도 즉, 복잡도의 상한(upper bound)을 기존의 QRD-M 알고리즘과 동일한 값으로 고정시킴으로써 SD(Sphere Decoding) 알고리즘에서 순시적으로 매우 높은 복잡도를 가지는 문제를 해결하는 동시에, 불필요한 Hypothesis를 제거하여 필요한 계산양을 현저하게 낮출 수 있는 장점이 있다. 분석과 모의실험 결과를 통하여 제안된 알고리즘이 기존의 QRD-M 알고리즘에 비하여 단지 26%의 계산양 만으로도 동일한 BER 성능을 가질 수 있음을 보인다.

Keywords

References

  1. S. Haykin and M. Moher, Modern Wireless Communications. Pearson Prentice Hall, New Jersey, 2005
  2. K. Su, Efficient Maximum Likelihood Detection for Communication over Multiple Input Multiple Output Channels. Doctoral Dissertation, University of Cambridge, 2005
  3. J. Jalden and B. Ottersten, 'On the complexity of sphere decoding in digital communications,' IEEE Trans. on Sig. Processing, vol. 53, no. 4, pp. 1474-1484, Apr. 2005 https://doi.org/10.1109/TSP.2005.843746
  4. J. Boutros, N. Gresset, L. Brunel, M. Fossorier, 'Soft-input soft-output lattice sphere decoder for linear channels,' in Proc. GLOBECOM'03, vol. 3, pp. 1583- 1587, 2003
  5. B. M. Hockwald, S. ten Brink, 'Achieving near-capacity on a multiple-antenna channel,' IEEE Trans. on Communications, vol. 51, no. 3, pp. 389-399, Mar. 2003 https://doi.org/10.1109/TCOMM.2003.809789
  6. B. Hassibi, H. Vikalo, 'On the expected complexity of integer least-squares problems,' in Proc. IEEE ICASSP'02, vol. 2, pp. 1497-1500, May 2002
  7. G. Golub, C. F. Van Loan, Matrix Computations. The Johns Hopkins Uni-versity Press, London, 1996
  8. J. Anderson, S. Mohan, 'Sequential coding algorithms: A survey and cost analysis,' IEEE Trans. on Communications, vol. 32, no. 2, pp. 169-176, Feb. 1984 https://doi.org/10.1109/TCOM.1984.1096023
  9. K.-J. Kim, R. Iltis, 'Joint detection and channel estimation algorithms for QSCDMA signals over time-varying channels,' IEEE Trans. on Communications, vol. 50, no. 5, pp. 845-855, May 2002 https://doi.org/10.1109/TCOMM.2002.1006565
  10. H. Kawai, K. Higuchi, N. Maeda, M. Sawahashi, 'Adaptive control of surviving symbol replica candidates in QRD-MLD for OFDM MIMO multiplexing,' IEEE J. Sel. Areas Commun., vol. 24, no. 6, pp. 1130-1140, June 2006 https://doi.org/10.1109/JSAC.2005.864027
  11. K. Jeon, H. Kim, H. Park, 'An efficient QRD-M algorithm using partial decision feedback detection,' in Proc. 40th Asilomar Conference on Signal, Systems, and Computers, pp. 1658-1661, Oct 2006 https://doi.org/10.1109/ACSSC.2006.355041
  12. H. Vikalo, B. Hassibi, T. Kailath, 'Iterative decoding for MIMO channels via modified sphere decoding,' IEEE Trans. on Wireless Communications, vol. 3, no. 6, pp. 2299-2311, Nov. 2004 https://doi.org/10.1109/TWC.2004.837271
  13. D. S. Baum, J. Salo, G. Del Galdo, M. Milojevic, P. Ky$\ddot{o}$sti, J. Hansen, 'An interim channel model for beyond-3G systems,' in Proc. IEEE VTC'05, vol. 5, pp. 3132-3136, May2005 https://doi.org/10.1109/VETECS.2005.1543924
  14. U. Fincke, M. Pohst, 'Improved methods for calculating vectors of short length in a lattice, including complexity analysis,' Mathematics of Computation, vol. 44, no. 170, pp. 463-471, Apr. 1985 https://doi.org/10.2307/2007966
  15. E. Agrell, T. Eriksson, A. Vardy, K. Zeger, 'Closest point search in lattices,' IEEE Trans. on Inf. Theory, vol. 48, no. 8, pp. 2201-2214, Nov. 2002 https://doi.org/10.1109/TIT.2002.800499
  16. L. Babai, 'On Lovasz' lattice reduction and the nearest point problem,' Combinatorica, vol. 6, no. 1, pp. 1-13, Mar. 1986 https://doi.org/10.1007/BF02579403
  17. Y. Dai, S. Suni, Z. Lei, 'A comparative study of QRD-M detection and sphere decoding for MIMO-OFDM systems,' in Proc. PIMRC'05, vol. 1, pp.186-190, Sep. 2005 https://doi.org/10.1109/PIMRC.2005.1651424