DOI QR코드

DOI QR Code

Effects of Dehydration Methods and Storage Conditions on Germinability of Pelleted Carrot Seeds

당근 펠렛종자의 건조방법 및 저장조건이 발아성에 미치는 영향

  • Kang, Jum-Soon (Department of horticultural bioscience, Pusan National University) ;
  • Son, Beung-Gu (Department of horticultural bioscience, Pusan National University) ;
  • Choi, Young-Whan (Department of horticultural bioscience, Pusan National University) ;
  • Lee, Yong-Jae (Department of horticultural bioscience, Pusan National University) ;
  • Joo, Woo-Hong (Department of Biology Changwon National University) ;
  • Lim, Chae-Shin (ATEC, Gyeongnam Agricultural Research and Extension Services) ;
  • Park, Young-Hoon (Department of horticultural bioscience, Pusan National University)
  • 강점순 (부산대학교 원예생명과학과) ;
  • 손병구 (부산대학교 원예생명과학과) ;
  • 최영환 (부산대학교 원예생명과학과) ;
  • 이용재 (부산대학교 원예생명과학과) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 임채신 (경남농업기술원 농업기술교육센타) ;
  • 박영훈 (부산대학교 원예생명과학과)
  • Published : 2009.04.30

Abstract

This study was conducted to identify the optimum condition for dehydration and storage for maintaining the seed vigor in pelleted carrot seeds. The water content of solid materials of un-pelleted seeds was 4.9% (F.W. basis), and that of pelleted seeds was 24%. When we dehydrated pelleted seeds for 3 hr at $25^{\circ}C$, $35^{\circ}C$, and $45^{\circ}C$, all seeds were dehydrated to 5% - the same level of water content as that before pelleting. Pelleted seeds did not show any significant difference in germination from un-pelleted seeds, and neither was there any significant time or germination difference between pelleted and un-pelleted seeds at the tested dehydration temperatures. However, the $T_{50}$ value of pelleted seeds increased about 3 days larger than that of un-pelleted seeds. Germination speed of pelleted seeds in which the dehydration period was prolonged at $45^{\circ}C$ was delayed compared to those prolonged at $25^{\circ}C$ or $35^{\circ}C$ for the same period. The optimum dehydration condition, which could be applied for large scale in the industry, was dehydration at $35^{\circ}C$ for 3 hr, and the optimum storage temperature which could maintain the seed performance was $5^{\circ}C$.

당근 펠렛종자의 적정 건조조건과 종자활력을 유지시킬 수 있는 저장조건을 구명하기 위하여 일련의 실험을 수행하였다. 펠렛전 피복재료의 함수율은 4.9% (FW basis)였으나, 펠렛을 제조한 후에는 접착제를 흡수하여 함수율이 24%로 증가되었다. 이들 종자를 $25^{\circ}C$, $35^{\circ}C$$45^{\circ}C$에서 건조시키면 3시간 이후에 펠렛전의 함수율과 동일한 5% 수준으로 건조되었다. 무처리 종자와 펠렛종자간 발아율에는 큰 차이가 없었으며, 펠렛 후 건조온도와 기간에 따른 발아율에도 큰 차이가 없었다. 그러나 펠렛종자는 무펠렛 종자에 비해 $T_{50}$은 약 3일 정도 지연되었다. 펠렛종자를 고온인 $45^{\circ}C$에서 건조시간을 연장시키면 동일기간의 $25^{\circ}C$$35^{\circ}C$의 건조에 비해 발아속도가 지연되었다. 산업화를 위한 대량 건조시에 적용될 수 있는 적정 건조조건은 $35^{\circ}C$에서 3시간 건조였다. 펠렛종자를 실온 저장하면 종자수명이 저하되었으나, $5^{\circ}C$ 저장은 퇴화속도가 완만하였다. 펠렛종자의 활력을 유지시킬 수 있는 적정 저장온도는 $5^{\circ}C$였다. 펠렛종자를 실온에서 4개월 저장하면 저장 전에 비해 묘출현율이 14% 감소되었다. 그러나 $5^{\circ}C$에 저장된 펠렛종자는 묘출현율 감소는 6%에 불과하였다. $5^{\circ}C$에 저장된 펠렛종자는 무처리에 비해 $E_{50}$이 2일 정도 지연되었으나, 35일 생육 후의 건물중은 무처리와 큰 차이가 없다.

Keywords

References

  1. Baxter, L. and L. Waters. 1986a. Effect of hydrophilic polymer seed coating on the field performance of sweet corn and cowpea. J. Amer. Soc. Hort. Sci. 111, 31-34
  2. Baxter, L. and L. Waters. 1986b. Effect of a hydrophilic polymer seed coating on the imbibition, respiration and germination of sweet corn at four matric potentials. J. Amer. Soc. Hort. Sci. 111, 17-20
  3. Cho, S. K., H. Y. Seo, Y. B. Oh, E. T. Lee, I. H. Choi, Y. S. Jang, Y. S. Song, and T. G. Min. 2000. Selection of coating materials and binders for pelleting onion (Allium cepa L.) seed. J. Kor. Soc. Sci. 41, 593-597
  4. Dadlani, M., V. V. Shenoy, and D. V. Seshu. 1992. Seed coat ing to improve stand establishment in rice. Seed Sci. Technol. 20, 307-313
  5. Durrant, M. J. and A. H. Loads. 1986. The effect of pellet structure on the germination and emergence of sugar-beet seed. Seed Sci. Technol. 14, 43-53
  6. International Seed Testing Association. 1996. International rules for seed testing. Seed Sci. Tech. 21(suppl), 141-146
  7. Kang, J. S. 2002. Selection of binder and solid materials for pelleting Welsh onion (Allium fistulosum L.) seeds. J. Life Sci. 12, 721-730
  8. Kang, J. S. 2004. Identification of pelleting materials and effect nutrient addition on the germination of pelleted lettuce seeds. J. Bio-Enviro. Control. 13, 8-15
  9. Kang, J. S., J. L. Cho, and J. M. Lim. 2003. Effect of seed pelleting on the precision planting and seedling emergence of carrot seeds. J. Life Sci. 13, 428-432
  10. Kaufman, G. 1994. Seed coating: A tool for stand establishments : A stimulus to seed quality. HortTechnology Oct/Dec. 98-102
  11. Langan, T. D., J. W. Pendleton, and E. S. Oplinger. 1986. Peroxide coated seed emergence in water-saturated soil. Agron. J. 78, 769-772 https://doi.org/10.2134/agronj1986.00021962007800050004x
  12. Markey, A. E. 1990. Growers benefit from seed technology. Amer. Veg. Grower 38, 14-16
  13. Min, T. G. 1996. Development of seed pelleting technology for rice and cabbage. Kor. J. Crop Sci. 41, 678-684
  14. Min, T. G., M. S. Park, and S. S. Lee. 1996. Physical characteristics and germination of pelleted tobacco seeds depending on moulding materials. Kor. J. Crop Sci. 41, 535-541
  15. Robinson, F. E., K. S. Mayberry, and D. J. Scherer. 1983. Lettuce stand establishment with improved seed pellets. Trans. Amer. Soc. Agric. Eng. 26, 78-79
  16. Roos, E. E. and E. D. Moore. 1975. Effect of seed coating on performance of lettuce seeds in greenhouse soil tests. J. Amer. Soc. Hort. Sci. 100, 73-576
  17. Sachs, M., D. J. Cantliffe, and T. A. Nell. 1982. Germination behavior of sand coated sweet pepper seeds. J. Amer. Soc. Hort. Sci. 107, 412-416
  18. Taylor, A. G. and G. E. Harman. 1990. Concepts and technologies of selected seed treatments. Annu. Rev. Phytopathol. 28, 21-339
  19. Valdes, V. M. and K. J. Bradford. 1987. Effects of seed coating and osmotic priming on the germination of lettuce seeds. J. Amer. Soc. Hort. Sci. 112, 153-156

Cited by

  1. Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy vol.41, pp.1, 2016, https://doi.org/10.5307/JBE.2016.41.1.051
  2. Nondestructive Classification of Viable and Non-viable Radish (Raphanus sativus L) Seeds using Hyperspectral Reflectance Imaging vol.37, pp.6, 2012, https://doi.org/10.5307/JBE.2012.37.6.411