Microbiological Hazard Analysis for Agricultural Products Processing Center of Tomato and Recommendations to Introduce Good Agricultural Practices (GAP) System

Good agricultural practices(GAP) 제도 도입을 위한 토마토 산지유통센터의 미생물 위해분석

  • Lee, Hyo-Won (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Yoon, Yo-Han (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Seo, Eun-Kyoung (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Kim, Kyeong-Yeol (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Shim, Won-Bo (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Kil, Joong-Kwon (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University) ;
  • Chung, Duck-Hwa (Division of Applied Life Science (BK21 program), Groduate school of Gyeongsang National University)
  • 이효원 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 윤요한 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 서은경 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 김경열 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 심원보 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 길중권 (경상대학교 대학원 응용생명과학부(BK21 program)) ;
  • 정덕화 (경상대학교 대학원 응용생명과학부(BK21 program))
  • Published : 2009.04.30

Abstract

This study identified microbial risk factors in agricultural products processing center (APC) through the microbial hazard analysis to introduce good agricultural practices (GAP) system in APCs. Samples were collected from surroundings (basket, tray loader, weighing cup, collector, box) and workers by swabbing (glove and cloth) and glove juice method (hand) to enumerate total bacteria, coliform, Staphylococcus aureus, Escherichia coli, Escherichia coli O157:H7 and Salmonella. The levels of total bacterial and coliform populations recovered from surroundings were 2.4-5.7 log CFU/100 $cm^2$ and 2.3-5.7 log CFU/100 $cm^2$ or hand for surroundings, and workers, respectively samples were 2.3-5.7 log CFU/100 $cm^2$ or hand. Escherichia coli populations were determined to be below detection limit. S. aureus and Salmonella populations recovered from surroundings were 3.0-4.4 log CFU/100 $cm^2$ and close to detection limit, respectively. Corresponding bacterial populations to worker's samples were 2.8-5.2 log CFU/100 $cm^2$ or hand (S. aureus) and below detection limit (Salmonella). Bacterial populations of APC certified facilities were similar (p${\geq}$0.05) with those of uncertified facilities. These results showed that this study should be useful in development of GAP models to improve microbial safety in APCs.

APC 지정시설과 APC 미지정시설의 선별대와 작업자, 공중낙하균을 대상으로 하여 미생물 오염도를 비교해 보았다. 그 결과 선별대의 경우 일반세균과 대장균군 모두 높은 수준으로 오염되어 있었고 S. aureus와 Salmonella도 검출되었다. 특히 모든 시료에서 S. aureus 의 오염이 매우 높아 제품으로의 직접적인 교차 오염이 우려되었다. 이와 같이 APC 지정시설과 APC 미지정시설간의 미생물 오염도 차이가 거의 없는 것은 기존의 APC 시설이 미생물학적 개념이 없이 단순히 저장의 용도로만 설치되었기 때문인 것으로 생각된다. 하지만 GAP제도를 도입 운영하기 위하여 APC 시설은 단순한 농산물 저장의 기능뿐만 아니라 2차 오염이 발생할 수 없는 구조를 갖추어 위생적인 선별 및 유통이 이루어져야 하고, GAP 운영의 연장선에서 관리 운영해야 할 것 이다. 아울러 일정한 기간마다 시설에 대한 위해요소 분석을 하여 APC시설의 미생물학적 측면에서의 적절한 유지, 보관 여부를 모니터링 하고, 그 결과를 문서화 하여야 할 것이다.

Keywords

References

  1. National Agricultural Products Quality Management Service. Agricultural products quality control regulation. Available at: http://www.farm2table.kr/jsp/info/info_system_intro.jsp. Accessed on Oct. 13, 2008
  2. Lee YM, Kang JI, Hwang GC. Necessity of introducing the GAP system and future policy direction. Ins. Agr. Life Sci. 39: 15-30(2005)
  3. Kokkinakis E, Boskou G, Fragkiadakis GA, Kokkinaki A, Lapidakis A. Microbiological quality of tomatoes and peppers produced under the good agricultural practices protocol AGRO 2-1 & 2-2 in Crete, Greece. Food Control 18: 1538-1546 (2007) https://doi.org/10.1016/j.foodcont.2006.12.002
  4. U.S. Department of Health and Human Services, Food and Drug Administration. Guide lines for effectiveness testing of surgical hands scrub (glove juice test). 43: 1242-1243 (1978)
  5. Larson EL, Strom MS, Evans CA. Analysis of three variables in sampling solutions used to assay bacteria of hands: Type of solution, use of antiseptic neutralizers, and solution temperature. J.Clin. Microbiol. 12: 355-360 (1980)
  6. Wheelock SM, Lookinland S. Effect of surgical hand scrub time on subsequent bacterial growth. AORN J. 65: 1087-1092,1094-1098(1997) https://doi.org/10.1016/S0001-2092(06)62949-9
  7. Waterman TR, Smeak DD, Kowalski J, Hade EM. Comparison of bacterial counts in glove juice of surgeons wearing smooth band rings versus those without rings. Am. J. Infect. Control 34: 421-425 (2006) https://doi.org/10.1016/j.ajic.2005.11.007
  8. Mpuchane S, Gashe BA. Prevalence of coliforms in traditionally dried leafy vegetables sold in open markets and food stores in Gaborone, Botswana. J. Food Protect. 59: 28-30 (1996)
  9. Mukherjee A, Speh D, Dyck E, Diez-Gonzalez F. Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J. Food Protect. 67: 894-900 (2004)
  10. Calicioglu M, Sofos JN, Samelis J, Kendall PA, Smith GC. Effect of acid adaptation on inactivation of Salmonella during drying and storage of beef jerky treated with marinades. Int. J. Food Microbiol. 89: 51-65 (2003) https://doi.org/10.1016/S0168-1605(03)00107-7
  11. FDA. Guidance for industry, guide to minimize microbial food safety hazard for fresh fruits and vegetables (October 26, 1998). Available at: http://www.foodsafety.gov/~dms/prodguid.html. Accessed on Oct 21, 2008.
  12. Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl. Environ. Microbiol. 57: 1134-1138 (1991)
  13. Harrigan W, McCance M. Laboratory Methods in Food and Dairy Microbiology. Academic Press Inc., Ltd., New York, NY, USA (1998)
  14. Longree K, Armbruster G. Quantity food sanitation. Longree K, Armbruster G(eds). John Wiley and Sons, Chichester, UK. p.464 (1987)
  15. Harris LJ, Beuchat LR, Kajs TM, Ward TE, Taylor CH. Efficacy and reproducibility of a produce wash in killing Salmonella on the surface of tomatoes assessed with a proposed standard method for produce sanitizers. J. Food Protect. 64: 1477-1482 (2001)
  16. Lee YW, Kim JG. A study on the trend of food poisoning outbreaks, reported cases, in Korea. Korean. J. Food Hyg. 2: 215-237 (1987)
  17. Styers D, Sheehan DJ, Hogan P, Sahm DF. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob. 5: 2 (2006) https://doi.org/10.1186/1476-0711-5-2
  18. Ha KS, Park SJ. Shim WB, Chung DH. Screening of MRSA (methicilline resistant Staphylococcus aureus) and seb gene in producing strains isolated from food service environment of elementary schools. J. Food Hyg. Saf. 18: 79-86 (2003)
  19. Park SG, Hwang YO, Jung JH, Lee KM. Biological characteristics of Staphylococcus aureus isolated from food-borne patients in Seoul. J. Food Hyg. Saf. 16: 159-167 (2001)
  20. Seo JE, Lee JK, Oh SW, Koo M, Kim YH, Kim YJ. Changes of microorganisms during fresh-cut cabbage processing: Focusing on the changes of air-borne microorganisms. J. Food Hyg. Saf. 22: 288-293 (2007)