Dehydration of Sliced Ginger Using Maltodextrin and Comparison with Hot-air Dried and Freeze-dried Ginger

Maltodextrin을 처리한 생강 절편의 탈수, 건조 및 열풍 건조와 동결건조된 생강과의 비교

  • Published : 2009.04.30

Abstract

Sliced ginger samples were dried using 30, 50, and 80% maltodextrin, respectively, as a dehydrating agent. The moisture content of the maltodextrin-treated ginger decreased with increasing concentrations of maltodextrin. The dehydrated ginger was compared with hot air-dried and freeze-dried ginger samples in terms of rehydration ratio, gingerol content, color, and sensory characteristics. The rehydration ratio of the maltodextrin-treated ginger was superior to those of the hot-air dried or freeze-dried ginger. In addition, the maltodextrin-treated ginger had the highest content of 6-gingerol among the samples. Color as well as sensory scores for odor, texture, appearance, and overall acceptance were greater for the maltodextrin-treated ginger compared to the hot-air dried or freeze-dried ginger. These results indicate that drying ginger with maltodextrin is very efficient because good rehydration capacity is retained and minimal cell destruction can be achieved.

Maltodextrin 30, 50, 80%의 농도로 생강 절편을 처리하여 탈수, 건조하였는데 maltodextrin 농도가 높을수록 탈수효율이 좋았으며 80% maltodextrin 처리된 생강은 최종 수분함량이 9.21%로 가장 탈수율이 좋았다. Maltodextrin 처리로 건조한 생강을 복원율, gingerol 함량, 색도, 관능평가 측면에서 열풍, 동결건조된 생강과 비교한 결과, maltodextrin 80% 처리한 생강의 복원율이 7.91 g/g로 열풍, 동결건조한 생강보다 복원율이 뛰어났다. Gingerol 함량은 maltodextrin 농도가 높을수록 함량이 많았는데 maltodextrin 80% 처리한 것이 1.19 mg/g로 가장 뛰어 났다. 색도의 L, a, b값은 maltodextrin 농도별로 유의적인 차이는 나타나지 않았고 대조구와 비교해서 유사한 경향을 나타냈다. 관능평가에서도 색도, 향, 조직, 외관, 종합적 기호도에서 maltodextrin 처리 시료가 다른 건조 방법에 비해서 보다 좋은 결과를 나타냈다. 그러므로 본 연구결과, maltodextrin을 처리하여 탈수, 건조하는 방법이 생강 절편의 건조에 있어서 복원율 등 품질과 비용 측면에서 열풍건조나 동결건조 방법보다 우수한 방법이라고 판단된다.

Keywords

References

  1. Alfaro MJ, B$\ddot{e}$langer JMR, Padilla FC, Par$\ddot{e}$ JRJ. Influnce of solvent,matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAPTM)1 extraction of ginger (Zingiber officinale). Food Res. Int. 36: 499-504 (2003) https://doi.org/10.1016/S0963-9969(02)00198-9
  2. Bhattarai S, Tran VH, Duke CC. The stability of gingerol and shogaol in aqueous solutions. J. Pharm. Sci. 90: 1658-1664(2001) https://doi.org/10.1002/jps.1116
  3. Suekawa M, Ishige A, Yuasa K, Sudo K, Aburada M, Hosoya E. Pharmacological studies on ginger. I. Pharmacological actions of pungent constituents, 6-gingerol and 6-shogaol. J. Pharm. Dyn. 7:836-848 (1984) https://doi.org/10.1248/bpb1978.7.836
  4. Hikino H, Kiso Y, Kato N, Hamada Y, Shioiri T, Aiyama R,Itokawa H, Kiuchi F, Sankawa U. Anthiepatotoxic actions of gingerols and diarylheptanoids. J. Ethnopharm. 14: 31-39 (1985) https://doi.org/10.1016/0378-8741(85)90025-X
  5. Bartley JP, Jacobs AL. Effects of drying on flavour compounds in Australian-grown ginger (Zingeiber officinale). J. Sci. Food Agr. 80:209-215 (2000) https://doi.org/10.1002/(SICI)1097-0010(20000115)80:2<209::AID-JSFA516>3.0.CO;2-8
  6. Mishra BB, Gautam S, Sharma A. Shelf-life extension of fresh ginger (zingiber officinale). J. Food Sci. 69: 275-279 (2004)
  7. Leung AY. Encyclopedia of Common Natural Ingredients. John Wiley & Sons, Inc., New York, NY, USA. pp. 270-274. (1980)
  8. MAF. Agricultural and Foresty Statistical Yearbook 2001. Ministry of Agriculture and Foresty, Seoul, Korea (2001)
  9. Das P, Sarma SK. Drying of ginger using solar cabinet dryer. J. Food Sci. Technol. 38: 619-621 (2001)
  10. Krokida MK, Marinos-Kouris D. Rehydration kinetics of dehydrated products. J. Food Eng. 57: 1-7 (2003) https://doi.org/10.1016/S0260-8774(02)00214-5
  11. Witrowa-Rajchert D, Lewicki PP. Rehydration properties of dried plant tissues. Int. J. Food Sci. Tech. 41: 1040-1046 (2006) https://doi.org/10.1111/j.1365-2621.2006.01164.x
  12. Karathanos VT, Kanellopoulos NK, Belessiotis VG. Development of porous structure during air drying of agricultural plant products. J. Food Eng. 29: 167-183 (1996) https://doi.org/10.1016/0260-8774(95)00058-5
  13. Wang NB. Changes in structure, density and porosity of potato during dehydration. J. Food Eng. 24: 61-67 (1995) https://doi.org/10.1016/0260-8774(94)P1608-Z
  14. Dermesonlouoglou EK, Giannakourou MC, Taoukis P. Stability of dehydrofrozen tomatoes pretreated with alternative asmotic solutes.J. Food Eng. 78: 272-280 (2007) https://doi.org/10.1016/j.jfoodeng.2005.09.026
  15. Moura CP, Masson ML, Yamamoto CI. Effect of osmotic dehydration in the apple(Pyrus malus) varieties Gala, Gold, and Fuji.Therm. Eng. 4: 46-49 (2005)
  16. Soe HC, Yu MS. Molecular press dehydration of plant tissues using soluble high molecular weight dehydrating agent. Korean patent 10-0444843 (2004)
  17. AOAC. Official Methods of Analysis of the AOAC. 15th ed.Method 950. 01 Association of Official Analysis Chemists. Washington,DC, USA (1990)
  18. SAS. SAS User`s Guide. Statistical Analysis Systems Institute Inc., Cary NC, USA (2001)
  19. Singh B, Panesar PS, Nanda B. Osmotic dehydration kinetics of carrot cubes in socdium chloride solution. Int. J. Food Sci. Tech.43: 1-10 (2008) https://doi.org/10.1111/j.1365-2621.2006.01372.x
  20. Mayor L, Moreira R, Chenlo F, Sereno AM. Kinetics of osmotic dehydration of pumpkin with sodium chloride solutions. J. Food Eng. 74: 253-262 (2006) https://doi.org/10.1016/j.jfoodeng.2005.03.003
  21. Jayaraman KSJ, Dasgupta DK, Baburao N. Effect of pretreatment with salt and sucrose on the quality and stability of dehydrated cauliflower. Int. J. Food Sci. Tech. 25: 47-60 (1990) https://doi.org/10.1111/j.1365-2621.1990.tb01058.x
  22. Mazza G. Dehydration of carrots (Effect of pre-drying treatments on moisture transport and product quality) J. Food Technol. 18:113-123 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb00249.x
  23. Karathanos V, Angela S, Karel M. Collapse of structure during drying of celery. Dry. Technol. 11: 1005-1023 (1993) https://doi.org/10.1080/07373939308916880
  24. Krokida MK, Maroulis ZB, Saravacos GD. The effect of the method of drying on the colour of dehydrated products. Int. J. Food Sci.Tech. 36: 53-59 (2001) https://doi.org/10.1046/j.1365-2621.2001.00426.x
  25. Ahmed J. Rheological behaviour and colour changes of ginger paste during storage. Int. J. Food Sci. Tech. 39: 325-330 (2004) https://doi.org/10.1111/j.1365-2621.2004.00789.x
  26. Azian MN, Kamal AAM, Azlian MN. Changes of cell structure in ginger during processing. J. Food Eng. 62: 359-364 (2004) https://doi.org/10.1016/S0260-8774(03)00251-6