초록
In order to prevent upper extremity musculoskeletal disorders, effective keyboard selection is an important consideration. The aim of this study was to compare upper extremity muscle activity according to transverse plane angle changes during vertical keyboard typing. Sixteen healthy men were recruited. All subjects had a similar typing ability (rate of more than 300 keystrokes per minute) and biacromion and forearm-fingertip lengths. Four different types of keyboard (vertical keyboard with a transverse plane angle of $60^{\circ}$, $96^{\circ}$, or $120^{\circ}$, and a standard keyboard) were used with a wrist support. The test order was selected randomly for each subject. Surface electromyography (EMG) was used to measure upper extremity muscle activity during a keyboard typing task. The collected EMG data were normalized using the reference contraction and expressed as a percentage of the reference voluntary contraction (%RVC). In order to analyze the differences in EMG data, a repeated one-way analysis of variance, with a significance level of .05, was used. Bonferroni correction was used for multiple comparisons. There were significant differences in the EMG amplitude of all seven muscles (upper trapezius, middle deltoid, anterior deltoid, extensor carpi radialis, extensor carpi ulnaris, flexor carpi radialis, and flexor carpi ulnaris) assessed during the keyboard typing task. The mean activity of each muscle had a tendency to increase as the transverse plane angle increased. The mean activity recorded during all vertical keyboard typing was lower than that recorded during standard keyboard typing. There was no significant difference in accuracy and error scores; however, there was a significant difference between transverse plane angles of $60^{\circ}$ and $120^{\circ}$ with regard to comfort. In conclusion, a vertical keyboard with a transverse plane angle of $60^{\circ}$ would be effective in reducing muscle activity compared with vertical keyboards with other transverse plane angles.