Optimum Strengths of Supply Nutrient Solution in Container Seedling of Trees Using Media Mixed Used-Rockwool

폐암면 혼합 상토를 이용한 수목류 용기묘의 급액 적정 농도

  • Kim, Ho-Cheol (Department of Horticulture and Pat Animal-Plant Science, Wonkwang University) ;
  • Lee, Soo-Won (Forest Practice Research Center, Korea Forest Research Institute) ;
  • Bae, Jong-Hyang (Department of Horticulture and Pat Animal-Plant Science, Wonkwang University)
  • 김호철 (원광대학교 원예. 애완동식물학부) ;
  • 이수원 (국립산림과학원 산림생산기술연구소) ;
  • 배종향 (원광대학교 원예. 애완동식물학부)
  • Published : 2009.03.31

Abstract

This study was carried to investigate effects of optimum supply strengths of 'Sonneveld' nutrient solution on growth characteristics in container seedling of trees (Pinus densiflora, Torreya nucifera, Quercus acutissina and Fraxinus mandshurica) using developed media with used-rockwool. Flesh weight, height and trunk diameter in container seedling of Torreya nucifera were better in high strengths. In container seed ling of Torreya nucifera, flesh weight more increased in 1.5 and 3.0 strengths and hight and trunk diameter more increased in 1.5 strength than the rest. Flesh weight in container seedling of Quercus acutissina was heaviest in 2.0 strength and was lightest in 1.0 strength. Height and dry weight in 2.0 and 3.0 strengths and trunk diameter and total chlorophyll in 2.0 strength were better than in the rest. Besides photosynthesis rate was more high in 1.5 and 2.0 strengths than in the rest. In container seedling of Fraxinus mandshurica, flesh weight, height and trunk diameter more increased in 0.5 strength and total chlorophyll and photosynthesis rate were good in 0.5 and 2.0 strengths. Most growth characteristics were poor in 3.0 strength.

침엽수종인 소나무(Pinus densiflora)와 비자나무(Torreya nucifera), 활엽수종인 상수리나무(Quercus acutissina)와 들메나무(Fraxinus mandshurica)를 대상으로 수경 재배를 이용한 우량 용기묘 생산 시 'Sonneveld' 배양액의 적정 농도를 구명하기 위해 수행하였다. 배양액의 공급 농도에 따른 소나무(0-0)의 생체중, 수고 및 원줄기 직경은 모두 높은 농도일수록 높은 경향을 나타내며 3.0배액에서 가장 높았다. 비자나무(1-1)의 생체중은 1.5배액과 3.배액에서 많이 증가하였고 수고와 원줄기 직경은 1.5 배액에서 가장 많이 증가하였다. 상수리나무(0-0)의 생체중은 2.0배액에서 가장 무거웠고 1.0배액에서 가장 가벼웠다. 수고와 건물중은 모두 2.0배액과 3.0배액에서 좋았고, 원줄기 직경과 엽록소 함량은 2.0배액에서 좋았다. 또한 광합성은 1.5배액과 2.0배액에서 활발하였다. 들메나무(1-1)의 생체중, 수고 및 원줄기 직경은 0.5배액에서 가장 많이 증가하였고, 엽록소 함량과 광합성은 0.5배액과 2.0배액에서 좋았다. 그리고 대부분의 생육 특성은 3.0배액에서 저조하였다.

Keywords

References

  1. Binkley, D. 1986. Forest nutrient management. John Wiley and Sons. New York. p. 290
  2. Chabot, B.F. and D.J. Hicks. 1982. The ecology of leaf life spans. Ann. Rev. Ecol. Syst. 13:229-250 https://doi.org/10.1146/annurev.es.13.110182.001305
  3. Kramer, P.J. and T.T. Kozlowski. 1979. Physiology of woody plants. Academic Press, New York, p. 811
  4. Kwon, K.W. and J.H. Lee. 1994. Growth performances and physiological responses of Quercus spp. and Fraxinus rhynchophylla subjected to different soil moisture regimes and nutrition levels. J. Kor. For. Soc. 83(2):164-174
  5. Lange, O.L., L. Kappen, and E.D. Schulze. 1976. Water and plant life. Springer-Verlag, Berlin. p. 536
  6. Lee, C.H. 1998. Effects of soil acidification on growth and nutrient status of Pinus densiflora seedlings. J. Kor. For. Soc. 87(4):611-619
  7. Lee, C.H., H.O. Jin, and T. Izuta. 1999. Growth, nutrient status and net photosynthetic rate of Pinus densiflora seedlings in various levels of aluminum concentrations. J. Kor. For. Soc. 88(2):249-254
  8. Lee, C.H., S.W. Lee, H.O. Jin, J.H. Jeong, and C.Y. Lee. 2002. Effects of Mn on the growth and nutrient status of Pinus densiflora seedling in nutrient culture solution. Kor. J. Ecol. 25(5):349-352 https://doi.org/10.5141/JEFB.2002.25.5.349
  9. Lee, C.H., S.W. Lee, E.Y. Kim, Y.K. Kim, J.K. Byun, H.G. Won, and H.O. Jin. 2005. Growth of Pinus densiflora seedlings in artificially acidified soils. Kor. J. Ecol. 28(6):389-393 https://doi.org/10.5141/JEFB.2005.28.6.389
  10. Lee, J.S., G.S. Kim, H.J. Bae, S.J. Jeong, and H.N. Jeong. 2000. Studies on optimum kinds and concentration of fertilizer for seedling of Pinus densiflora in greenhouse. Kor. J. Hort. Sci. Technol. 18(2):258
  11. Levitt, J. 1980. Responses of plants to environmental stress. Vol. 2. p. 322-445. Water, radiation salt, and other stresses. Academic Press. New York
  12. Li, B., H.L. Allen, and S.E. McKeand. 1991. Nitrogen and family effects on biomass allocation of loblolly pine seedlings. For. Sci. 37:271-283
  13. Malik, V. and V.R. Timmer. 1998. Biomass partitioning and nitrogen retranslocation in black spruce seedlings on competitive mixed wood sites: a bioassay study. Can. J. For. Res. 28:206-215 https://doi.org/10.1139/cjfr-28-2-206
  14. Proe, M.F. and P. Millard. 1994. Relationships between nutrient supply, nitrogen partitioning and growth in young Sitka spruce (Picea sitchesis). Tree Physiol. 14:75-88 https://doi.org/10.1093/treephys/14.1.75
  15. Rengel, Z. 1992. Role of calcium in aluminum toxicity. New Phytol. 121:499-513 https://doi.org/10.1111/j.1469-8137.1992.tb01120.x
  16. Sieth, B., E. George, H. Marschner, T. Wallenda, C. Schaeffer, W. Einig, A. Wingler, and R. Hampp. 1996. Effects of varied soil nitrogen on Norway spruce (Picea abies L. Karst.). I. Shoot and root growth and nutrient uptake. Plant Soil. 184:291-298 https://doi.org/10.1007/BF00010458
  17. Singh, S.P. and G.C.S. Negi. 1992. Leaf nitrogen dynamics with particular reference to retranslocation in evergreen and deciduous tree species to Kumaun Himalaya. Can. J. For. Res. 23:349-357 https://doi.org/10.1139/x93-051
  18. Ulrich, B., R. Mayer, and P.K. Khanna. 1980. Chemical changes due to acid precipitation in a Loessderived soil in central Europe. Soil Sci. 130:193-199 https://doi.org/10.1097/00010694-198010000-00005
  19. Waring, R.H. and J.F. Franklin. 1979. Evergreen coniferous forests of the Pacific Northwest. Science 204:1380-1385 https://doi.org/10.1126/science.204.4400.1380