Abstract
Most hard disk drives that apply the ramp load/unload technology unload the heads at the outer edge of the disk while the disk is rotating. The load/unload includes the benefits as like an increased areal density, a reduced power consumption and an improved shock resistance. A lot of papers investigating the effects of the various load/unload parameters such as a suspension tab, a limiter, a ramp and air-bearing surface designs have been published. However, in previous researches, an effect of the suspension is not considered at each load/unload step. In this paper, we focus that a variation of the state matrix affects the load/unload performance on based on a state matrix that is a stiffness matrix of the suspension. Because the state matrix is related to the suspension at each load/unload step, to change the state matrix means the structural change of the suspension. Therefore, we investigated a range of a pitch static attitude(PSA) and a roll static attitude(RSA) for load/unload performance. We also analyzed an effect of the variation of the state matrix a range of load/unload velocity occurred a slider-disk contact. We determined the variation of the state matrix to improve the load/unload performance through comparison of each factor of state matrix.