Profiling of Gene Expression in Human Keratinocyte Cell Line Exposed to Quantum Dot Nanoparticles

  • Kim, In-Kyoung (Department of Biochemistry & Molecular Biology, Korea University Medical College) ;
  • Lee, Seung-Ho (Department of Biochemistry & Molecular Biology, Korea University Medical College) ;
  • Kim, Yu-Ri (Department of Biochemistry & Molecular Biology, Korea University Medical College) ;
  • Seo, Sang-Hui (Department of Biochemistry & Molecular Biology, Korea University Medical College) ;
  • Jeong, Sang-Hoon (Laboratory of Cell Signalling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine) ;
  • Son, Sang-Wook (Laboratory of Cell Signalling and Nanomedicine, Department of Dermatology and Division of Brain Korea 21 Project for Biomedical Science, Korea University College of Medicine) ;
  • Kim, Meyoung-Kon (Department of Biochemistry & Molecular Biology, Korea University Medical College)
  • Published : 2009.03.31

Abstract

Quantum Dot (QD) nanoparticles are used in various industrial applications, such as diagnostic, drug delivery, and imaging agents of biomedicine. Although QDs are extensively used in many medical science, several studies have been demonstrated the potential toxicity of nanoparticles. The first objective of this study was to investigate the nanotoxicity of QDs in the HaCaT human keratinocyte cell line by focusing on gene expression pattern. In order to evaluate the effect of QDs on gene expression profile in HaCaT cells, we analyzed the differential genes which related to oxidative stress and antioxidant defense mechanisms by using human cDNA microarray and PCR array. A human cDNA microarray was clone set, which was sorted for a list of genes correlated with cell mechanisms. We tried to confirm results of cDNA microarray by using PCR array, which is pathway-focused gene expression profiling technology using Real-Time PCR. Although we could not find the exactly same genes in both methods, we have screened the effects of QDs on global gene expression profiles in human skin cells. In addition, our results show that QD treatment somehow regulates cellular pathways of oxidative stress and antioxidant defense mechanisms. Therefore, we suggest that this study can enlarge our knowledge of the transcriptional profile and identify new candidate biomarker genes to evaluate the toxicity of nanotoxicology.

Keywords

References

  1. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538-544 (2005) https://doi.org/10.1126/science.1104274
  2. Jaiswal, J. K. & Simon, S. M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497-504 (2004) https://doi.org/10.1016/j.tcb.2004.07.012
  3. Portney, N. G. & Ozkan, M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620-630 (2006) https://doi.org/10.1007/s00216-005-0247-7
  4. Liu, S., Lee, C. M., Wang, S. & Lu, D. R. A new bioimaging carrier for fluorescent quantum dots: phospholipid nanoemulsion mimicking natural lipoprotein core. Drug Deliv 13:159-164 (2006) https://doi.org/10.1080/10717540500394695
  5. Ballou, B. Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 70:103-120 (2005) https://doi.org/10.1016/S0070-2153(05)70005-3
  6. Derfus, A. M., Chan, W. C. W. & Bhatia, S. Probing the cytotoxicity of semiconductor nanocrystals. Nano Lett 4:11-18 (2004) https://doi.org/10.1021/nl0347334
  7. Durnev, A. D. Toxicology of nanoparticles. Bull Exp Biol Med 145:72-74 (2008) https://doi.org/10.1007/s10517-008-0005-x
  8. Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251-277 (2007) https://doi.org/10.1080/10408440601177780
  9. Moore, M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967-976 (2006) https://doi.org/10.1016/j.envint.2006.06.014
  10. Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165-172(2006) https://doi.org/10.1289/ehp.8284
  11. Hoshino, A. et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163-2169 (2004) https://doi.org/10.1021/nl048715d
  12. Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331-338 (2005) https://doi.org/10.1021/nl047996m
  13. Yang, H., Liu, C., Yang, D., Zhang, H. & Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69-78 (2009) https://doi.org/10.1002/jat.1385
  14. Ryman-Rasmussen, J. P., Riviere, J. E. & Monteiro-Riviere, N. A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143-153 (2007) https://doi.org/10.1038/sj.jid.5700508
  15. Bentzen, E. L. et al. Surface modification to reduce nonspecific binding of quantum dots in ive cell assays. Bioconjug Chem 16:1488-1494 (2005) https://doi.org/10.1021/bc0502006
  16. Yu, W. W., Chang, E., Drezek, R. & Colvin, V. L. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781-786 (2006) https://doi.org/10.1016/j.bbrc.2006.07.160
  17. Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987-13996 (2007) https://doi.org/10.1021/ja0749744
  18. Arikawa, E. et al. RT2 ProfilerTM PCR Array Application Examples Pathway-Focused Gene Expression Profiling in Toxicology, Oncology, and Immunology Research. SABiosciences Technical article
  19. Arikawa, E. et al. RT2 ProfilerTM PCR Arrays: Pathway-Focused Gene Expression Profiling with qRTPCR. SABiosciences Technical article
  20. Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L. & Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412-1417 (2006) https://doi.org/10.1002/smll.200600218
  21. Pradhan, N., Xu, H. & Peng, X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett 6:720-724 (2006) https://doi.org/10.1021/nl052497m
  22. Deyrieux, A. F. & Wilson, V. G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology 54:77-83 (2007) https://doi.org/10.1007/s10616-007-9076-1
  23. DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457-460 (1996) https://doi.org/10.1038/ng1296-457
  24. Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 55:641-650 (2001) https://doi.org/10.1016/S0361-9230(01)00522-6
  25. Park, G. H. et al. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp Mol Med 34:184-193 (2002) https://doi.org/10.1038/emm.2002.27
  26. Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA 97:9127-9132 (2000) https://doi.org/10.1073/pnas.97.16.9127
  27. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868 (1998) https://doi.org/10.1073/pnas.95.25.14863
  28. Lee, J. et al. Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB J 20:2375-2377 (2006) https://doi.org/10.1096/fj.06-5957fje
  29. Murray, J. C. et al. Endothelial monocyte-activating polypeptide-II (EMAP-II): a novel inducer of lymphocyte apoptosis. J Leukoc Biol 75:772-776 (2004) https://doi.org/10.1189/jlb.1003487
  30. Mailleux, A. A. et al. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12:221-234 (2007) https://doi.org/10.1016/j.devcel.2006.12.003
  31. Everse, J. & Coates, P. W. The cytotoxic activity of lactoperoxidase: enhancement and inhibition by neuroactive compounds. Free Radic Biol Med 37:839-849 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.06.017