References
- Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538-544 (2005) https://doi.org/10.1126/science.1104274
- Jaiswal, J. K. & Simon, S. M. Potentials and pitfalls of fluorescent quantum dots for biological imaging. Trends Cell Biol 14:497-504 (2004) https://doi.org/10.1016/j.tcb.2004.07.012
- Portney, N. G. & Ozkan, M. Nano-oncology: drug delivery, imaging, and sensing. Anal Bioanal Chem 384:620-630 (2006) https://doi.org/10.1007/s00216-005-0247-7
- Liu, S., Lee, C. M., Wang, S. & Lu, D. R. A new bioimaging carrier for fluorescent quantum dots: phospholipid nanoemulsion mimicking natural lipoprotein core. Drug Deliv 13:159-164 (2006) https://doi.org/10.1080/10717540500394695
- Ballou, B. Quantum dot surfaces for use in vivo and in vitro. Curr Top Dev Biol 70:103-120 (2005) https://doi.org/10.1016/S0070-2153(05)70005-3
- Derfus, A. M., Chan, W. C. W. & Bhatia, S. Probing the cytotoxicity of semiconductor nanocrystals. Nano Lett 4:11-18 (2004) https://doi.org/10.1021/nl0347334
- Durnev, A. D. Toxicology of nanoparticles. Bull Exp Biol Med 145:72-74 (2008) https://doi.org/10.1007/s10517-008-0005-x
- Nohynek, G. J., Lademann, J., Ribaud, C. & Roberts, M. S. Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 37:251-277 (2007) https://doi.org/10.1080/10408440601177780
- Moore, M. N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967-976 (2006) https://doi.org/10.1016/j.envint.2006.06.014
- Hardman, R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165-172(2006) https://doi.org/10.1289/ehp.8284
- Hoshino, A. et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 4:2163-2169 (2004) https://doi.org/10.1021/nl048715d
- Kirchner, C. et al. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331-338 (2005) https://doi.org/10.1021/nl047996m
- Yang, H., Liu, C., Yang, D., Zhang, H. & Xi, Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69-78 (2009) https://doi.org/10.1002/jat.1385
- Ryman-Rasmussen, J. P., Riviere, J. E. & Monteiro-Riviere, N. A. Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. J Invest Dermatol 127:143-153 (2007) https://doi.org/10.1038/sj.jid.5700508
- Bentzen, E. L. et al. Surface modification to reduce nonspecific binding of quantum dots in ive cell assays. Bioconjug Chem 16:1488-1494 (2005) https://doi.org/10.1021/bc0502006
- Yu, W. W., Chang, E., Drezek, R. & Colvin, V. L. Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781-786 (2006) https://doi.org/10.1016/j.bbrc.2006.07.160
- Susumu, K. et al. Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. J Am Chem Soc 129:13987-13996 (2007) https://doi.org/10.1021/ja0749744
- Arikawa, E. et al. RT2 ProfilerTM PCR Array Application Examples Pathway-Focused Gene Expression Profiling in Toxicology, Oncology, and Immunology Research. SABiosciences Technical article
- Arikawa, E. et al. RT2 ProfilerTM PCR Arrays: Pathway-Focused Gene Expression Profiling with qRTPCR. SABiosciences Technical article
- Chang, E., Thekkek, N., Yu, W. W., Colvin, V. L. & Drezek, R. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2:1412-1417 (2006) https://doi.org/10.1002/smll.200600218
- Pradhan, N., Xu, H. & Peng, X. Colloidal CdSe quantum wires by oriented attachment. Nano Lett 6:720-724 (2006) https://doi.org/10.1021/nl052497m
- Deyrieux, A. F. & Wilson, V. G. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology 54:77-83 (2007) https://doi.org/10.1007/s10616-007-9076-1
- DeRisi, J. et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 14:457-460 (1996) https://doi.org/10.1038/ng1296-457
- Vawter, M. P. et al. Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 55:641-650 (2001) https://doi.org/10.1016/S0361-9230(01)00522-6
- Park, G. H. et al. Genome-wide expression profiling of 8-chloroadenosine- and 8-chloro-cAMP-treated human neuroblastoma cells using radioactive human cDNA microarray. Exp Mol Med 34:184-193 (2002) https://doi.org/10.1038/emm.2002.27
- Tanaka, T. S. et al. Genome-wide expression profiling of mid-gestation placenta and embryo using a 15,000 mouse developmental cDNA microarray. Proc Natl Acad Sci USA 97:9127-9132 (2000) https://doi.org/10.1073/pnas.97.16.9127
- Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863-14868 (1998) https://doi.org/10.1073/pnas.95.25.14863
- Lee, J. et al. Role of cyclooxygenase-2 induction by transcription factor Sp1 and Sp3 in neuronal oxidative and DNA damage response. FASEB J 20:2375-2377 (2006) https://doi.org/10.1096/fj.06-5957fje
- Murray, J. C. et al. Endothelial monocyte-activating polypeptide-II (EMAP-II): a novel inducer of lymphocyte apoptosis. J Leukoc Biol 75:772-776 (2004) https://doi.org/10.1189/jlb.1003487
- Mailleux, A. A. et al. BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. Dev Cell 12:221-234 (2007) https://doi.org/10.1016/j.devcel.2006.12.003
- Everse, J. & Coates, P. W. The cytotoxic activity of lactoperoxidase: enhancement and inhibition by neuroactive compounds. Free Radic Biol Med 37:839-849 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.06.017