방사성폐기물 처분에서 미생물의 역할과 중요성

Roles and Importance of Microbes in the Radioactive Waste Disposal

  • 발행 : 2009.03.30

초록

방사성폐기물 처분에서 미생물에 대한 연구는 최근에 중요한 연구 결과들이 지속적으로 발표됨에 따라 그 중요성에 대한 인식이 차츰 확대되고 있는 추세이다. 본 연구에서는 방사성폐기물 처분에서 미생물의 역할과 영향들에 대한 연구결과 및 연구동향을 조사 분석하였다. 방사성폐기물 처분시스템에서 고려되고 있는 다중방벽들인 인공방벽과 자연방벽에서의 미생물들의 역할 및 연구결과를 정리하여 제시하였다. 인공방벽에서는 처분용기의 부식에 대한 영향과 압축된 완충재에서의 미생물의 생존가능성 및 역할에 대해 논의하였다. 천연방벽에서는 지하수 및 암반에 존재하는 미생물들의 역할을 자연유사연구 결과와 함께 정리하여 제시하였다. 또한 지하매질을 통한 핵종이동 및 지연특성에서 미생물의 역할과 다양한 작용과정들 및 영향을 최근 연구동향과 함께 분석하고 정리하여 제시하였다. 따라서 향후 심부 지하 환경에서 처분시스템의 거동 및 지중매질을 통한 방사성 핵종의 이동 등에 미치는 미생물의 영향에 대한 심도 있는 연구가 본격적으로 수행된다면 미생물의 중요성 및 역할에 대한 엄격한 평가를 할 수 있을 것으로 사료된다.

Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

키워드

참고문헌

  1. J.M. West, I.G. McKinley and N.A. Chapman, "Microbes in deep geological systems and their possible influence on radioactive waste disposal," Radioactive Waste Management and the Nuclear Fuel Cycle, 3, pp. 1-15 (1982).
  2. J.M .. West, N. Christofi and I.G. McKinley, "An overview of recent microbilogical research relevant to the geological disposal of nuclear waste," Radioactive Waste Management and the Nuclear Fuel Cycle, 6, pp. 79-95 (1985).
  3. J.M. West, "A review of progress in the geomicrobiology of radioactive waste disposal," Radioactive Waste Management Environ. Restor., 19, 263-283 (1995).
  4. S. Stroes Gascoyne and J.M. West, "Microbial studies in the Canadian nuclear waste management program," FEMS Microbiology Reviews, 20, pp. 573-590 (1997). https://doi.org/10.1111/j.1574-6976.1997.tb00339.x
  5. K. Pedersen, Microbial processes in radioactive waste disposal. SKB TR-00-04, Swedish Nuclear Fuel and Waste Management Co., Stockholm (2000)
  6. A. Abdelouas, Y. Lu, W. Luze and H.E. Nuttall, "Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated groundwater water," J. Contam. Hydrol., 35, pp. 217-233 (1998). https://doi.org/10.1016/S0169-7722(98)00134-X
  7. W. Dong, G. Xie, T.R. Miller, M.P. Franklin, T.P. Oxenberg, E.J. Bouwer, W.P. Ball and R.U. Halden, "Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay," Environ. Pollution, 142, pp. 132-142 (2006). https://doi.org/10.1016/j.envpol.2005.09.008
  8. D. Fortin and S. Langley, "Formation and occurrence of biogenic iron-rich minerals," Earth-Science Reviews, 72, pp. 1-19 (2005). https://doi.org/10.1016/j.earscirev.2005.03.002
  9. D. Gorman-Lewis, J.B. Fein, L. Soderholm, M.P. Jensen and M.-H. Chiang, "Experimental study of neptynyl adsorption onto Bacillus subtilis," Geochim. Cosmochim. Acta, 69, pp. 4837-4844 (2005). https://doi.org/10.1016/j.gca.2005.06.028
  10. J. Kim, H. Don, J. Seabaugh, S.W. Newell and D.D. Ebert, "Role of microbes in the smectite-to-illite reaction," Science, 303, pp. 830-832 (2004). https://doi.org/10.1126/science.1093245
  11. T. Ohnuki, H. Aoyagi, Y. Kitatsttii, M. Samadfam, Y. Kimura and O.W. Purvis, "Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI)," J. Environ. Radioactivity, 77, pp. 339-353 (2004). https://doi.org/10.1016/j.jenvrad.2004.03.015
  12. T. Ozaki, J.B. Fillow, T. Kimura, T. Ohnuki, Z. Yoshida and A.J. Francis, "Sorption behavior of europium(III) and curium(III) on the cell surfaces of microorganism," Radiochim. Acta, 92, pp. 741-748 (2004) https://doi.org/10.1524/ract.92.9.741.55006
  13. P.J. Panak, R. Knopp, C.H. Booth and H. Nitsche, "Spectroscopic studies on the interaction of U(VI) with Bacillus Sphaericus," Radiochim. Acta, 90, pp. 779-783 (2002). https://doi.org/10.1524/ract.2002.90.9-11_2002.779
  14. K.H. Williams, D. Natarlagiannis, L.D. Slater, A. Dohnalkova, S. Hubbard and J.F. Banfield, "Geophysical imaging of stimulated microbial biomineralization," Environ. Sci. Technol., 39, pp. 7592-7600 (2005). https://doi.org/10.1021/es0504035
  15. S. Stroes-Gascoyne and F.P. Sargent, "The Canadian approach to microbial studies in nuclear waste management and disposal," J. Contam. Hydrol., 35, pp. 175-190 (1998). https://doi.org/10.1016/S0169-7722(98)00128-4
  16. 이종열, 조동건, 최희주, 최종언, 이양, "심지층 처분을 위한 사용후핵연료 냉각기간 분석," 방사성폐기물학회지, 6, pp. 65-72 (2008).
  17. S. Stroes-Gascoyne, L.M. Lucht, J. Borsa, T.L. Delaney, S.A. Haveman and C.J. Hamon, 1995. "Radiation resistance of the natural microbial population in buffer materials," Mat. Res. Soc. Symp. Proc., 353, pp. 345-352 (1995).
  18. L.M. Lucht and S. Stroes-Gascoyne, Characterization of the Radiation and Heat Resistance of the Natural Microbial Population in Buffer Materials and Selected Pure Cultures, Report TR-744, COG-96-171, Atomic Energy of Canada Limited, Pinawa (1996).
  19. S. Stroes-Gascoyne, K. Pedersen, S. Daumas, C.J. Hamon, S.A., Haveman, T.L. Delaney, S. Ekendahl, N. Jahromi, J. Arlinger, I. Hallbeck and K. Dekeyser, Microbial Analysis of the Buffer/Container Experiment at AECL's Underground Research Laboratory, Report AECL-11436, COG-95-446, Atomic Energy of Canada Limited, Pinawa (1996).
  20. S. Stroes-Gascoyne, K. Pedersen, S.A. Haveman, S. Daumas, C.J. Hamon, J. Arlinger, S. Ekendahl, L. Hallbeck, N. Jahromi, T.L. Delany and K. Dekeyser, "Occurrence and identification of microorganisms in compacted clay-based buffer material designed for use in a nuclear fuel waste disposal vault," Can. J. Microbiol., 43, pp. 1133-1146 (1997). https://doi.org/10.1139/m97-162
  21. F. King and S. Stroes-Gascoyne, "Predicting the effects of microbial activity on the corrosion of copper nuclear waste disposal containers," Proceedings of the NATO Advanced Research Workshop on Microbial Degradation Processes in a Radioactive Waste Repository and in Nuclear Fuel Storage Area. Wolfram, J. H., Rogers, RD., Gazso, L. G. (Eds.), NATO ASI Series, Disarmament Techniques Vol. II, May 9-11, 1996, Budapest, Hungary.
  22. S. Stroes-Gascoyne, L.M. Lucht, D.W. Oscarson, D.A. Dixon, H.B. Hume and S.H. Miller, Migration of Bacteria in Compacted Clay-Based Material, Report AECL-11866, COG-97-413-I, Atomic Energy of Canada Limited, Pinawa (1997).
  23. F. King, Microbially Influenced Corrosion of Copper Nuclear Fuel Waste Containers in a Canadian Disposal Vault," Report AECL-11471, COG-95-519, Atomic Energy of Canada Limited, Pinawa (1996).
  24. 이재완, 조원진, "고준의폐기물처분장 완충재물질로서 팽윤성 점토의 장기건전성과 주요 고려사항," 방사성폐기물학회지, 6, pp. 55-63 (2008).
  25. K. Pedersen and F. Karlsson, Investigations of subtettanean microorganism - Their importance for performance assessment of radioactive waste disposal, SKB TR-95-10, Swedish Nuclear Fuel and Waste Management Co., Stockholm (1995).
  26. S. Kotelnikova and K. Pedersen, The micro-REX project: Microbial $O_2$ consumption in the Aspo tunnel, SKB TR-99-17, Swedish Nuclear Fuel and Waste Management Co., Stockholm (1999).
  27. R.H. Crozier, P.-M. Agapov and K. Pedersen, "Towards complete biodiversity assessment: An evaluation of the subterranean bacterial communities in the Oklo region of the sole surviving natural nuclear reactor," FEMS Microbiology Ecology, 28, pp. 325-334 (1999). https://doi.org/10.1111/j.1574-6941.1999.tb00587.x
  28. K. Pedersen, B. Allard, J. Arlinger, R. Bruetsch, C. Degueldre, L. Hallbeck, M. Laaksoharju, M. Lutz and C. Pettersson, Bacteria, colloids and organic carbon in groundwater at the Bangomb? site in the Oklo area, SKB TR 96-01, Swedish Nuclear Fuel and Waste Management Co., Stockholm (1996).
  29. K. Pedersen, J. Arlinger, L. Hallbeck and C. Petterson, "Diversity and distribution of subterranean bacteria in groundwater at Oklo in Gabon, Africa, as determined by 16S-rRNA gene sequencing technique," Molecular Ecology, 5, pp. 427-436 (1996). https://doi.org/10.1111/j.1365-294X.1996.tb00332.x
  30. D.R Lovely, E.J.P. Phillips, Y.A. Gorby and R.R. Lands, "Microbial reduction of uranium," Nature, 350, pp. 413-416 (1991). https://doi.org/10.1038/350413a0
  31. D.R. Lovely and J.P. Phillips, "Bioremediation of uranium contamination with uranium reduction," Environ. Sci. Technol., 26, pp. 2228-2234 (1992). https://doi.org/10.1021/es00035a023
  32. D.R Lovely and J.P. Phillips, "Reduction of uranium by Desulfovibrio dessulfuricans," Appl. Environ. Microbiol., 58, pp. 850-856 (1992).
  33. K. Pedersen, Effect of microorganisms and organic material upon radionuclide migration," Migration'03 Conference, Sep. 21-26, 2003, Gyeongju, Korea.
  34. F.G. Ferris, K.O. Konhauser, B. Lyven and K. Pedersen, "Accumulation of metals by bacteriogenic iron oxides in a subterranean environment," Geomicrobiology Journal, 16, pp. 181-192 (1999). https://doi.org/10.1080/014904599270677
  35. F.G. Ferris, R.O. Hallberg, B. Lyven and K. Pedersen, "Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment," Appl. Geochem., 15, pp. 1035-1042 (2000). https://doi.org/10.1016/S0883-2927(99)00093-1
  36. C. Zhang, S. Liu, T.J. Phelps, D.R Cole, J. Horita, S.M. Fortier, M. Elless and J.W. Valley, "Physicochemical, mineralogical, and isotopic characterization of magnetite ricj iron oxides formed by thermophilic bacteria," Geochim. Cosmochim. Acta, 61, pp. 4621-4632 (1997). https://doi.org/10.1016/S0016-7037(97)00257-3
  37. J.K. Fredrickson, J.M. Zachara, D.W. Kennedy, H. Dong, T.C. Onstott, N.W. Hinman and S. Li, "Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium," Geochim. Cosmochim. Acta, 62, pp. 3239-3257 (1998). https://doi.org/10.1016/S0016-7037(98)00243-9
  38. H. Dong, J.K. Fredrickson, D.W. Kennedy, J.M. Zachara, R.K. Kukkadapu and T.C. Onstott, "Mineral transformations associated with the microbial reduction of magnetite," Chern. Geol., 169, pp. 299-318 (2000). https://doi.org/10.1016/S0009-2541(00)00210-2
  39. Y. Roh, H. Gao, H. Vali, D.W. Kennedy, Z.K. Yang, W. Gao, A.C. Dohnalkova, R.D. Stapleton, J.-W. Moon, T.J. Phelps, J.K. Fredrickson and J. Zhou, "Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium Schewanella sp. PV-4," Appl. Environ. Microbiol., 72, pp. 3236-3244 (2006). https://doi.org/10.1128/AEM.72.5.3236-3244.2006
  40. A.J. Francis and C.J. Dodge, "Anaerobic microbial remobilization of toxic metals co-precipitated with iron oxide," Environ. Sci. Technol., 24, pp. 373-378 (1990). https://doi.org/10.1021/es00073a013
  41. F.G. Ferris, R.G. Wiese and W.S. Fyfe, "Precipitation of carbonate minerals by microorganisms: Implications for silicate weathering and the global carbon dioxide budge," Geomicrobio. J., 12, pp. 1-13 (1994). https://doi.org/10.1080/01490459409377966
  42. D.R. Lovely, "Dissimilatory Fe(III) and Mn(IV) reduction," Microbial. Rev., 55, pp. 259- 287 (1991).
  43. Y. Roh, H.S. Moon and Y. Song, "Metal reduction and mineral formation by Fe(III)-reducing bacteria isolated from extreme environment," J. Miner. Soc. Korea, 15, pp. 231-240 (2002).
  44. 조원진, 권상기, 박정화, 한필수, "고준위폐기물 처분연구용 지하터널의 기본 설계," 방사성폐기물학회지, 2, pp. 279-291 (2004).