DOI QR코드

DOI QR Code

The Effect of Atmospheric Flow Field According to the Radius Influence and Nudging Coefficient of the Objective Analysis on Complex Area

자료동화의 영향반경과 동화강도가 복잡지형 기상장 수치모의에 미치는 영향

  • Choi, Hyun-Jung (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Hwa-Woon (Division of Earth Environmental System, Pusan National University) ;
  • Sung, Kyoung-Hee (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Min-Jung (Division of Earth Environmental System, Pusan National University)
  • 최현정 (부산대학교 지구환경시스템학부) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 성경희 (부산대학교 지구환경시스템학부) ;
  • 김민정 (부산대학교 지구환경시스템학부)
  • Published : 2009.03.31

Abstract

In order to reduce the uncertainties and improve the air flow field, objective analysis using observational data is chosen as a method that enhances the reality of meteorology. To improve the meteorological components, the radius influence and nudging coefficient of the objective analysis should perform a adequate value on complex area for the objective analysis technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to clarify the impacts of the radius influence and nudging coefficient of the objective analysis on meteorological environments. By analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. In order to understand the quantitative impact of each run, the Statistical analysis by estimated by MM5 revealed the differences by the synoptic conditions. The strengthening of the synoptic wind condition tends to be well estimated when using quite a wide radius influence and a small nudging coefficient. On the other hand, the weakening of the synoptic wind is opposite.

Keywords

References

  1. 이화운, 최현정, 이강열, 2005, 객관분석에 의한 복잡지형의 대기 유동장 수치 모의와 모델에 의한 자료질 조절효과, 한국대기환경학회지, 21(1), 97-105
  2. Smolarkiewicz P. K., Grell G. A., 1992, A class of monotone interpolation schemes, Journal of Computational Physics, 101, 431-440 https://doi.org/10.1016/0021-9991(92)90018-T
  3. Umeda T., Martien P. T., 2000, Evaluation of a data assimilation technique for a mesoscale meteorological model used for air quality modeling, J. Appl. Meteor., 41, 21-29
  4. Lee H. W., Choi H. J., Lee S. H., Kim Y. K., Jung W. S., 2008, The Impact of Topography and Urban Building Parameterization on the Photochemical Ozone Concentration of Seoul, Korea, Atmospheric Environment, 42, 4232-4246 https://doi.org/10.1016/j.atmosenv.2008.01.021
  5. Elbir T., 2003, Comparison of model predictions with the data of an urban air quailty monitoring metwork in Izmir, Turkey, Atmospheric Environment, 37, 2149-2157 https://doi.org/10.1016/S1352-2310(03)00087-6
  6. Stauffer D. R., Seaman N. L., 1999, Multiscale -four dimensional data assimilation, J. Appl. Meteor., 33, 416-426 https://doi.org/10.1175/1520-0450(1994)033<0416:MFDDA>2.0.CO;2
  7. 이화운, 최현정, 이강열, 2005, 상세한 하부 경계조건과 관측값 객관분석이 복잡지형의 대기흐름장수모의에 미치는 효과, 한국기상학회지, 41(1), 73-87
  8. 이화운, 원혜영, 최현정, 2004, 복잡한 해안지역에서의 지상관측자료를 이용한 대기유동장 수치모의, 한국대기환경학회지, 20(5), 633-645
  9. 김진영, 김영성, 정관영, 2000, 서울,인천지역 자동기상관측 바람 자료의 특성 분석, 한국기상학회지. 36(2), 153-166
  10. Grell G. A., Dudhia J., Stauffer D. R., 1995, A Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5), NCAR/TN-398+STR, National Center for Atmospheric Research, Boulder; CO, 107
  11. Mlawer E. J., Taubman S. J., Brown P. D., Iacono M. J., Clough S. A., 1997, Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated- k model for the longwave. J. Geophys. Res., 102(D14), 16663-16682 https://doi.org/10.1029/97JD00237
  12. 부경온, 전영신, 박지용, 조하만, 권원태, 1999, 자동기상관측장치자료를 이용한 서울의 기온수평분포분석, 한국기상학회지, 35(3), 335-343
  13. National Center for Atmospheric Research, 1994, Terrain and Land Use for the Fifth-Generation Penn State/NCAR Mesoscale Modeling System(MM5) Program TERRAIN. NCAR Technical Notes, NCAR/TN-397+IA

Cited by

  1. Development of Optimal Modeling System for Analyzing Mountain Micrometeorology vol.17, pp.2, 2015, https://doi.org/10.5532/KJAFM.2015.17.2.165
  2. Sensitivity Analysis of the WRF Model according to the Impact of Nudging for Improvement of Ozone Prediction vol.25, pp.5, 2016, https://doi.org/10.5322/JESI.2016.25.5.683
  3. Sensitivity Analysis of Ozone Simulation according to the Impact of Meteorological Nudging vol.32, pp.4, 2016, https://doi.org/10.5572/KOSAE.2016.32.4.372