DOI QR코드

DOI QR Code

Study on the Intrinsic Defects in Undoped GaSb Bulk and MBE-grown GaSb/SI-GaAs Epitaxial Layers for Infrared Photodetectors

적외선검출소자를 위한 GaSb 결정 및 MBE로 성장한 Gasb/SI-GaAs 박막의 진성결함에 관한 연구

  • Kim, J.O. (Department of Physics, Kyung Hee University) ;
  • Shin, H.W. (Department of Physics, Kyung Hee University) ;
  • Choe, J.W. (Department of Physics, Kyung Hee University) ;
  • Lee, S.J. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science) ;
  • Noh, S.K. (Global Research Laboratory on Quantum Detector Technology, Korea Research Institute of Standards and Science)
  • 김준오 (경희대학교 물리학과) ;
  • 신현욱 (경희대학교 물리학과) ;
  • 최정우 (경희대학교 물리학과) ;
  • 이상준 (한국표준과학연구원 나노소계측정센터 양자검출소자기술 글로벌연구실) ;
  • 노삼규 (한국표준과학연구원 나노소계측정센터 양자검출소자기술 글로벌연구실)
  • Published : 2009.03.31

Abstract

We have investigated the intrinsic defects remaining in epitaxial GaSb layers grown on SI-GaAs substrates compared to those in bulk GaSb crystal substrate, which is a basic material of Sb-based strained-layer superlattice infrared photodetectors. From the functional dependence of the band-to-band transition energy of the photomuminescence (PL) spectra observing up to near room-temperature (250 K), the temperature parameters of [$E_o$, $\alpha$, $\beta$] of undoped GaSb crystal are determined by using the Varshni empirical equation describing the temperature variation of the bandgap energy. Additionally to the antisite-Ga ([$Ga_{Sb}$]) with an ionization energy of 29 meV that is well known to a major intrinsic defect in GaSb, epitaxial GaSb layers show a pair of deep states at the emission energy of 732/711 meV that may be related with a complex of two antisite-Ga and antisite-Sb ([$Ga_{Sb}-Sb_{Ga}$]). Based on the analysis of the temperature and the excitation-power dependences of PL, it suggests that excess-Sb substitutes Ga-site by self-diffusion and two anti sites of [$Ga_{Sb}$] and [$Sb_{Ga}$] could form as a complex of [$Ga_{Sb}-Sb_{Ga}$] in GaSb epilayers grown under Sb-rich condition.

Sb에 기초한 응력 초격자 적외선검출소자의 구성 물질인 도핑하지 않은 기판 GaSb 결정과 GaSb/SI-GaAs 박막에 잔존하고 있는 진성결함 (intrinsic defect)을 비교 조사하였다. 상온 근처 (250 K)까지 광여기 발광 (PL)을 보이는 GaSb 결정에서의 발광 에너지의 온도의존성으로부터, 밴드갭 에너지에 관한 경험식인 Varshni 함수의 파라미터 ($E_o$, $\alpha$, $\beta$)를 결정하였다. GaAs 기판 위에 성장된 이종 GaSb 박막에서는 GaSb 주요 진성결함으로 알려져 있는 29 meV의 이온화 에너지를 가지는 위치반전 (antisite) Ga ([$Ga_{Sb}$]) 결함과 함께 위치반전 Sb ([$Sb_{Ga}$])와의 복합결함 ([$Ga_{Sb}-Sb_{Ga}$])과 관련된 것으로 분석된 732/711 meV의 한 쌍의 깊은준위 (deep level)가 관측되었다. PL의 온도 및 여기출력 의존성을 분석하여, Sb-rich상태에서 성장된 GaSb 박막에서는 잉여 Sb의 자발확산 (self-diffusion)에 의하여 치환된 위치전도 [$Ga_{Sb}$] 및 [$Sb_{Ga}$]가 결합하여 [$Ga_{Sb}-Sb_{Ga}$]의 깊은준위를 형성하는 것으로 해석되었다.

Keywords

References

  1. S. K. Noh, S. J. Lee, Y. H. Ryu, S. M. Choe, and S. H. Park, New Phys. 54, 483 (2007)
  2. B. Movaghar, S. Tsao, S. A. Pour, S. A. Pour, T. Yamanaka, and M. Razeghi, Phys. Rev. B 78, 115320 (2008) https://doi.org/10.1103/PhysRevB.78.115320
  3. J. O. Kim, S. J. Lee, S. K. Noh, J. W. Choe, and T. W. Kang , J. Korean Phys. Soc. 53, 2100 (2008)
  4. S. K. Noh and S. J. Lee, New Phys. 51, 191 (2005)
  5. D. H. Nahm, J. D. Song, W. J. Choe, W. J. Cho, J. I. Lee, J. W. Choi, and H. S. Yang, J. Korean Vacuum Soc. 15, 216 (2006)
  6. H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger, and M. Sundaram, Appl. Phys. Lett. 92, 183502 (2008) https://doi.org/10.1063/1.2920764
  7. S. J. Lee, S. K. Noh, L. R. Dawson, and S. Krishna, J. Korean Phys. Soc. 54, 280 (2009) https://doi.org/10.3938/jkps.54.280
  8. P. S. IMta and H. L. Bhat, J. AppL Phys. 81, 5821 (1997) https://doi.org/10.1063/1.365356
  9. A. Chroneos and H. Bracht, J. Appl. Phys. 104, 093714 (2008) https://doi.org/10.1063/1.3010300
  10. M. Hakala, M. J. Puska, and R. M. Nieminen, J. Appl. Phys. 91, 4988 (2002) https://doi.org/10.1063/1.1462844
  11. R. Hao, Y. Xu, Z. Zhou, Z. Ren, H. Ni, Z. He, and Z. Niu, J. Phys. D : AppL Phys. 40, 1080 (2007) https://doi.org/10.1088/0022-3727/40/4/025
  12. M-C. Wu and C.-C. Olen, J. AppL Phys. 72, 4275 (1992) https://doi.org/10.1063/1.352216
  13. L. T-Mejia, J. A. Villada, M de los Rios, J. A. Penafiel, G. Fonthal, D. G. E.-Arbelaez, H. A-Calderon, and M. E. R.-Garcia, Physica B 403, 4027 (2008) https://doi.org/10.1016/j.physb.2008.07.049
  14. W. G. Hu, Z. Wang, B. F. Su, Y. Q. Dai, S. J. Wang, and Y. W. Zhao, Phys. Lett. A 332, 286 (2004) https://doi.org/10.1016/j.physleta.2004.09.056
  15. S. Adachi, Properties of Group-IV, llI-V and II-VI Semiconductors (John Wiley & Sons, Chichester, 2005), p.81, pp.120-124

Cited by

  1. Electrical characteristics of homoepitaxial p-GaSb analyzed by the p–n junction: A correction on the Hall parameter of heteroepitaxial p-GaSb/SI–GaAs vol.12, pp.6, 2012, https://doi.org/10.1016/j.cap.2012.06.001
  2. A Study of Be Levels in p-GaSb:Be/GaAs Epitaxial Layers vol.20, pp.2, 2011, https://doi.org/10.5757/JKVS.2011.20.2.135