DOI QR코드

DOI QR Code

Adsorption of Heavy Metal Ions from Aqueous Solution by Chestnut Shell

밤 부산물의 수용액 중 중금속 흡착 특성

  • Lee, Hyeon-Yong (Department of Biological Environment, Kangwon National University) ;
  • Hong, Ki-Chan (Department of Biological Environment, Kangwon National University) ;
  • Lim, Jung-Eun (Department of Biological Environment, Kangwon National University) ;
  • Joo, Jin-Ho (Department of Biological Environment, Kangwon National University) ;
  • Yang, Jae-E (Department of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University)
  • 이현용 (강원대학교 자원생물환경학과) ;
  • 홍기찬 (강원대학교 자원생물환경학과) ;
  • 임정은 (강원대학교 자원생물환경학과) ;
  • 주진호 (강원대학교 자원생물환경학과) ;
  • 양재의 (강원대학교 자원생물환경학과) ;
  • 옥용식 (강원대학교 자원생물환경학과)
  • Published : 2009.03.31

Abstract

In Korea, large amounts of chestnut shell as by-products are produced from food industries. However, most of the by-products exist with no disposal options. Biosorption uses biomass that are either abundant or wastes from industrial operations to remove toxic metals from water. Objective of this research was to evaluate the feasibility of using chestnut shell as by-products for removal of metal ions(Pb, Cu and Cd) from aqueous solution. The chestnut shell was tested for its efficiency for metal removal by adopting batch-type adsorption experiments. The adsorption selectivity of chestnut shell for metals was Pb > Cu > Cd at solution pH 5.5. The Langmuir isotherm adequately described the adsorption of chestnut shell for each metal. Using The maximum adsorption capacity predicted using Langmuir equation was 31.25 mg $g^{-1}$ 7.87 mg $g^{-1}$ and 6.85 mg $g^{-1}$ for Pb, Cu and Cd, respectively. Surface morphology, functional group and existence of metals on chestnut shell surface was confirmed by FT-IR, SEM and EDX analysis. The chestnut shell showed an outstanding removal capability for Pb compared to various adsorbents reported in the literatures. The overall results suggested that chestnut shell might can be used for biosorption of Pb from industrial wastewater.

본 연구는 탄닌 성분이 다량 함유된 율피를 사용하여 폐수 중 중금속 3종(Cd, Pb, Cu)에 대한 흡착특성을 알아보고 향후 폐수처리공정에서 생물흡착소재의 적응가능성을 평가하고자 수행하였다. 실험에 사용한 인공폐수에는 Cu, Pb, Cd을 첨가하여 10, 20, 40, 60, 100, 150, 200 mg $L^{-1}$ 오염시켰으며 pH 5.5에서 흡착실험을 진행하였다. 율피의 중금속 흡착량은 중금속 유형별로 차이를 나타내었으며 중금속 농도가 증가함에 따라 흡착량이 증가하다가 점차 증가율이 감소하여 일절한 평형에 도달하는 경향을 나타내었는데 이는 율피의 표면이 피흡착물질로 채워져 비어있는 흡착가능 영역이 감소하기 때문인 것으로 판단되었다. 상기 연구 결과를 Freundlich 및 Langmuir 모델에 적응한 결과 $r^2$값은 Langmuir 모델에서 Pb, Cu, Cd 3가지 중금속 모두 0.99 이상으로 높게 나타났으며 각 중금속에 대한 율피의 흡착친화도는 Pb>Cu>Cd 순으로 최대흡착량($q_m$)은 Pb 31.25 mg $g^{-1}$, Cu 7.87 mg $g^{-1}$, Cd 6.85 mg $g^{-1}$로 조사되었다. FT-IR 분석결과 율피는 1080 $cm^{-1}$에서 carbonyl group, hydroxyl group, carboxyl group과 1200 $cm^{-1}$에서 1700 $cm^{-1}$ 사이의 carboxylate group, carboxyl group, methylene group, ester group 등이 존재하는 것으로 조사되었다. SEM 분석 결과 중금속 이온 흡착 전에는 표면이 매끄럽게 안정된 모습이 관찰되었지만 중금속 흡착 반응 후 전자밀도가 높은 부분이 관찰되어 중금속 이온이 흡착되었을 것으로 판단되었고 EDS 분석을 수행한 결과 중금속 이온의 흡착 후 표면의 납 이온 피크가 관찰되었다. 이상의 결과로부터 율피에 의한 중금속 이온의 흡착은 물리적인 흡착보다는 관능기에 의한 화학적 흡착일 것으로 판단되었다.

Keywords

References

  1. Ok, Y. S., Yang, J. E., Zhang, Y. S., Kim, S. J. and Chung, D. Y. (2007) Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J. Hazard, Mat. 147, 91-96 https://doi.org/10.1016/j.jhazmat.2006.12.046
  2. Seo, Y. C., Lee, H. J. and Kim, D. W. (2006) Characteristics of heavy metals bio-sorption by Penicillium biomass. KSFEA. 9, 49-54
  3. Lee, H. Y., Lim, J. E., Hong, K. C, Yang, J. E. and Ok, Y. S. (2008) Biosorption technology for removal of heavy metals from wastewater : a literature review. TALS. 6, 15-24
  4. Brierley, C. L., Brierley, J.A. and Davidson, M.S. (1989) Applied microbial processes for metals recovery and removal from wastewater. In Metals Ions and Bacteria(Edited by Beveridge, T. J. and Doyle, R. J.) John Wiley, New York, p.359-382
  5. Volesky, B. (1990) Biosorption of heavy metals. CRC Press
  6. Volesky, B. (2007) Biosorption and me, Water Res. 41, 4017-4029 https://doi.org/10.1016/j.watres.2007.05.062
  7. Jeon, C. and Choi, S. S. (2007) A study on heavy metal removal using alginic acid. KORRA. 15, 107-114
  8. Jeon, B. G. (1998) A Study on the production of chestnut powder in the inner shell(endo carp) of a chestnut from its treatment plant - A basic study on the recycling process design of wasted inner shell. Waste Recycling and Management Research. 15, 57-65
  9. Yoshio, N., Kenji, T., and Toshiro, T. (2001) Adsorption mechanism of hexavalent chromium by redox within condensed-tannin gel, Water Res. 35, 496-500 https://doi.org/10.1016/S0043-1354(00)00279-7
  10. Hong, K. C., Lee, H. Y., Lim, J. E., Choi, B. S., Yang, J. E. and Ok, Y. S. (2008) Development of precious metal recovery process using agricultural by-product : Gold adsorption in aqueous solution by chestnut shell. Journal of Agriculture and Life Science. 19, 105-113
  11. Suh, K. H., Ahn, K. H., Cho, M. C., Cho, J. K., Jin, H. J. and Hong, Y. K. (2001) Sargassum confusum for biosorption of Pb and Cr. J. Korean Fish. Soc. 34, 1-6
  12. Jeon, D. Y., Lee, K. S., Shin, H. M. and Oh, K. J. (2006) Adsorption characteristics of heavy metals for waste sludge and oyster shell. KENSS. 15,1053-1059 https://doi.org/10.5322/JES.2006.15.11.1053
  13. Bae, J. S., Park, C. K., Sung, K. C., Lee, S. W. and Hwang, Y. H. (2003) A study on the adsorption of heavy metals in waste water using domestic clays. J. of Korean Oil Chemists' Soc. 21, 124-131
  14. Kim, I. B. (2002) A study on the removal of heavy metals by biomass(I). J. Korean Society of Environmental Administration. 8, 223-229
  15. Choi, I. W., Kim, S. U., Seo, D. C., Kang, B. H., Sohn, B. K., Rim, Y. S., Heo, J. S. and Cho, J. S. (2005) Biosorption of heavy metals by biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida. Kor. J. Environ. Agric. 24, 370-378 https://doi.org/10.5338/KJEA.2005.24.4.370
  16. Ruthven, D. W. (1984) Principles of adsorption and adsorption process. John Wiley & Sons, U.S.A
  17. Lee, M. G., Lim, J. H., Hyun., S. S. and Kam, S. K. (2002) Adsorption characteristics of copper ion by jeju scoria. J. Kor. Soc, of Environ. Eng. 40, 252-258
  18. Fourest, E. and Volesky, B. (1996) Contribution of sulfonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ. Sci. Technol. 30, 277-282 https://doi.org/10.1021/es950315s
  19. Cho, J. S., Park, I. N., Heo, J. S. and Lee, Y. S. (2004) Biosorption and desorption of heavy metals using Undaria sp. Kor. J. Environ. Agric. 23, 92-98 https://doi.org/10.5338/KJEA.2004.23.2.092
  20. Ok, Y. S., Hong, K. C., Yang, J. E. and Joo, J. H. (2009) Gold recovering method in solution by chestnut shell. Korea Patent 10-2009-0006248
  21. Shukla, S. S., Shukla, A., Zhang, Y. H., Dubey, P. and Margrave, J. L. (2002) The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mat. 95, 137-152 https://doi.org/10.1016/S0304-3894(02)00089-4
  22. Jeon, C. and Kim, J. H. (2007) Heavy metal removal using sawdust. KORRA. 15, 81-88

Cited by

  1. Remediation of Heavy Metal Polluted Agricultural Field with Spent Mushroom Media vol.49, pp.1, 2016, https://doi.org/10.7745/KJSSF.2016.49.1.066
  2. Current research trends for heavy metals of agricultural soils and crop uptake in Korea vol.31, pp.1, 2012, https://doi.org/10.5338/KJEA.2012.31.1.75
  3. Adsorption Characteristics of Chromium Ion at Low Concentration Using Oxyfluorinated Activated Carbon Fibers vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1050
  4. Phosphate Adsorption Characteristics of a Filter Medium, Adphos, and Its Efficiency by the Filtration Experiment Combined with the Vegetation Mat vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.231