Abstract
This study was performed to investigate the optimum abrasive and friction milling ratio. This was accomplished by determining changes in the quality, such as whiteness, moisture content, broken kernel, unstripped embryo rate, and surface characteristics or milling difference, during an abrasive and friction based milling process. When only abrasive was milled, the increase of whiteness was fast in the first milling, whereas the increasing rate of whiteness was small in the latter milling. The decreasing rate of moisture content and broken kernel increased as the friction milling ratio was increased. Combining with the friction milling was considered a suitable method because the unstripped embryo rate was high only when abrasive milling was used. In the case of a high abrasive milling ratio, a significant milling difference was observed in the initial milling. This indicated that the milling difference was not completely eliminated despite using friction milling in the latter milling. Consequently, it was necessary to minimize the milling difference in the initial milling. When milling quality was synthetically considered, the abrasive milling ratio was varied from 20~50%. When the abrasive milling ratio was greater than 40%, the external quality of the rice milled deteriorated since holes and defects generated on the surface in the initial milling were not removed. Due to this deterioration in surface characteristics, an abrasive milling ratio of 30% was identified as a suitable level.