강도다리 Platichthys stellatus 담수 순화시 삼투압 조절에 미치는 갑상선호르몬의 영향

Effects of 3,5,3'-Triiodothyronine (T3) on Osmoregulation following Freshwater Acclimation in Starry Flounder

  • 민병화 (국립수산과학원 육종연구센터) ;
  • 임한규 (국립수산과학원 양식관리과) ;
  • 장영진 (부경대학교 양식학과) ;
  • 김영수 (부경대학교 양식학과) ;
  • 명정인 (국립수산과학원 육종연구센터)
  • Min, Byung-Hwa (Genetics and Breeding Research Center, National Fisheries Research and Development Institute) ;
  • Lim, Han-Kyu (Dept. of Aquaculture Management, National Fisheries Research and Development Institute) ;
  • Chang, Young-Jin (Dept. of Aquaculture, Pukyong National University) ;
  • Kim, Young-Soo (Dept. of Aquaculture, Pukyong National University) ;
  • Myeong, Jeong-In (Genetics and Breeding Research Center, National Fisheries Research and Development Institute)
  • 발행 : 2009.12.31

초록

본 연구에서는 외인성 T3처리가 강도다리의 담수 순화시 삼투압 조절과 혈중 코티졸 변화에 어떠한 영향을 미치는지 조사하였다. 해수에서 사육 중인 강도다리에 갑상선호르몬의 일종인 T3를 5, 10 및 $15{\mu}g$/g body weight의 농도로 0.9% NaCl과 함께 주입하고 담수로 옮긴 후 3일째 혈액을 채취하였으며, 삼투압 조절 지표인 $Na^+,\;Cl^-$ 및 삼투질 농도와 스트레스 지표인 cortisol, glucose를 조사하였다. $10{\mu}g$/g의 T3를 주입한 실험구의 혈장 $Na^+$$Cl^-$의 농도는 호르몬 처리 없이 담수로 이동한 대조구에 비해 유의하게 높았다. 삼투질 농도는 $10{\mu}g$/g과 $15{\mu}g$/g의 농도를 주입한 실험구가 대조구보다 높았다. 그러나 $5{\mu}g$/g 농도의 T3를 주입한 실험구에서는 삼투압 조절에 영향을 미치지 않는 것으로 나타났다. 또한 본 연구에서는 T3를 주입한 모든 실험구에서 glucose와 상관없이 cortisol의 농도가 모두 증가하는 경향을 나타내었다. 이러한 cortisol의 증가는 스트레스 반응이 아닌 삼투압 조절과 관련이 있으며, 결과적으로 강도다리의 담수 순화시 외인 성 T3는 cortisol을 증가시킴으로 어체의 고삼투압 조절 능력을 향상시키는 것으로 추정된다.

The aim of this study was to test if 3,5,3'-triiodothyronine (T3) are involved in the osmoregulatory actions in euryhaline starry flounder Platichthys stellatus. We investigated osmoregulatory parameters ($Na^+,\;Cl^-$ and osmolality), blood cortisol and glucose in starry flounder acclimated to seawater (SW, 33 psu) and that were transferred and allowed to acclimate to freshwater (FW, 0 psu). Fish in SW were injected with T3 (5, 10, and $15{\mu}g$/g body weight) or vehicle (0.9% NaCl), and then transferred to FW. They were sampled 3 days after the transfer. With T3 at $10{\mu}g$/g, levels of plasma $Na^+$ and $Cl^-$ were significantly higher than in sham (only saline) and control fish (without hormone and saline). Osmolality was significantly higher after injection with T3 at 10 and $15{\mu}g$/g than in the control. However, T3 at $5{\mu}g$/g had no effect on hyper-osmoregulation. In this study, all dose of T3 induced a significant increases in plasma cortisol without glucose. These results suggest a positive hyper-osmoregulatory role of T3 in starry flounder to hypoosmotic environment, maybe a positive interaction of T3 with cortisol for maintenance of hyper-osmoregulatory ability.

키워드

참고문헌

  1. Brown CL, Bern HA (1989) Hormones in early development, with special reference to teleost fishes. In: Scanes, S.C., Shreibman, M.P. (Eds.), Hormones in Development, Maturation and Senescence of Neuroendocrine Systems. Academic Press New York pp 289-306.
  2. Chang YJ, Hur JW (1999) Physiological responses of grey mullet (Mugil cephalus) and Nile tilapia (Oreochromis niloticus) rapidchanges in salinity of rearing water. J Korean Fish Soc 32:310-316.
  3. Chang YJ, Min BH, Choi CY (2007) Black porgy (Acanthopagrus schlegeli) prolactin cDNA sequence: mRNA expression and blood physiological responses during freshwater acclimation. Comp Biochem Physiol 147B: 122-128.
  4. Chyung MK (1977) The Fishes of Korea. Iijisa Seoul 550 pp.
  5. Flik G, Klaren PHM, van den Burg EH, Metz JR, Huising MO (2006). CRF and stress in fish. Gen Comp Endocrinol 146:36-44. https://doi.org/10.1016/j.ygcen.2005.11.005
  6. Gaitskell RE, Jones I (1970) Effects of adrenalectomy and cortisol injection on the in vitro movement of water by the intestine of the freshwater european eel (Anguilla anguilla). Gen Comp Endocrinol 15:491-493. https://doi.org/10.1016/0016-6480(70)90123-1
  7. Grau EG, Dickhoff WW, Nishioka RS, Bern HA, Folmar LC (1981) Lunar phasing of the thyroxine surge preparatory to seaward migration of salmonids fish. Science 221:607-609. https://doi.org/10.1126/science.221.4611.607
  8. Han HK, Kang DY, Jun CY, Chang YJ (2003) Effects of salinity changes on physiological response and growth of yearling sea bass, Lateolabrax japonicus. J Aquaculture 16:31-36.
  9. Hanson RW, Reshef L (1997) Regulation of phosphoenol pyruvate carboxykinase (PEPCK) gene expression. Ann Rev Biochem 66:581-611. https://doi.org/10.1146/annurev.biochem.66.1.581
  10. Kelly SP, Woo YS (1999) Cellular and biochemical characterization of hypoosmotic adaptation in a marine teleost, Sparus sarba. Zool Sci 16:505-514. https://doi.org/10.2108/zsj.16.505
  11. Klaren PHM, Haasdijk R, Metz JR, Nitsch LMC, Darras VM, Van der Geyten S, Flik G (2005) Characterization of an iodothyronine 5'-deiodinase in gilthead seabream (Sparus auratus) that is inhibited by dithiothreitol. Endocrinology 146:5621-5630. https://doi.org/10.1210/en.2005-0050
  12. Knoeppel SJ, Atkins DL, Packer RK (1982) The role of the thyroid gland in osmotic and ionic regulation in Fundulus heteroclitus acclimated to freshwater and seawater. Comp Biochem Physiol 73A:25-29.
  13. Lee KM, Kaneko T, Aida K (2006) Prolactin and prolactin receptor expressions in a marine teleost, Takifugu rubripes. Gen Comp Endocrinol 149:318-328.
  14. Madsen SS, Jensen MK, Nohr J, Kristiansen K (1995) Expression of $Na^{+}$-$K^{+}$-ATPase in the brown trout, Salmo trutta: in vivo modulation by hormones and seawater. Am J Physiol 269:R1339-1345.
  15. Mancera JM, McCormick SD (1999) Influence of cortisol, growth hormone, insulin-like growth factor I and 3,3',5- triiodol-thyronine on hypoosmoregulatory ability in the euryhaline teleost Fundulus heteroclitus. Fish Physiol Biochem 21:25-33. https://doi.org/10.1023/A:1007737924339
  16. Mancera JM, Carrion RL, Río MPM (2002) Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.). Gen Comp Endocrinol 129:95-103. https://doi.org/10.1016/S0016-6480(02)00522-1
  17. Mancera JM, Fuentes J (2006) Osmoregulatory action of hypophyseal hormones in teleosts. In: Reinecke, M., Zaccone, G., Kapoor, B.G. (Eds.), Fish Physiology vol. 1. Science Publishers Enfield NH pp 393-417.
  18. Manzon LA (2002) The role of prolactin in fish osmoregulation: a review. Gen Comp Endocrinol 125: 291-310. https://doi.org/10.1006/gcen.2001.7746
  19. Mayer-Gostan N, Wendelaar Bonga SE, Balm PHM (1987) Mechanisms of hormone actions on gill transport. In: Pang PKT, Schreibman MP (Eds), Vertebrate endocrinology: Fundamentals and Biomedical Implications, vol. 1. Academic Press Boston MA pp 211-238.
  20. McCormick SD (1990) Cortisol directly stimulates differentiation of chloride cells in tilapia opercular membrane. Am J Physiol 259:R857-863.
  21. McCormick SD (1995) Hormonal control of gill $Na^{+}$, $K^{+}$-ATPase and chloride cell function. In: Wood CM, Shuttlewoth TJ (Eds.), Fish Physiology, vol. 14. Academic Press San Diego CA pp 285-315.
  22. McCormick SD (1996) Effect of growth hormone and insulin-like factor I on salinity tolerance and gill $Na^{+}$, $K^{+}$-ATPase in atlantic salmon (Salmo salar): interaction with cortisol. Gen Comp Endocrinol 101:3-11. https://doi.org/10.1006/gcen.1996.0002
  23. McCormick SD (2001) Endocrine control of osmoregulation in fish. Am Zool 282:290-300.
  24. Min BH, Kim BK, Hur JW, Bang IC, Byun SK, Choi CY, Chang YJ (2003) Physiological responses during freshwater acclimation of seawater-cultured black porgy (Acanthopagrus schlegeli). Korean J Ichthyol 15:224- 231.
  25. Min BH, Choi CY, Chang YJ (2005) Comparison of physiological conditions on black porgy, Acanthopagrus schlegeli acclimated and reared in freshwater and seawater. J Aquaculture 18:37-44.
  26. Perry SF, Goss GG, Laurent P (1992) The interrelationships between gill chloride cell morphology and ionic uptake in four freshwater teleosts. Can J Zool 70: 1775-1786. https://doi.org/10.1139/z92-245
  27. Perry SF (1997) The chloride cell: structure and function in the gills of freshwater fishes. Annu Rev Physiol 59: 325-347. https://doi.org/10.1146/annurev.physiol.59.1.325
  28. Peter MCS, Lock RAC, Wendelaar Bonga SE (2000) Evidence for an osmoregulatory role of thyroid hormones in the freshwater mozambique tilapia Oreochromis mossambicus. Gen Comp Endocrinol 120:157-167. https://doi.org/10.1006/gcen.2000.7542
  29. Prunet P, Boeuf G, Bolton JP, Young G (1989) Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone, and thyroid hormones. Gen Comp Endocrinol 74:355-364. https://doi.org/10.1016/S0016-6480(89)80031-0
  30. Schreiber AM, Specker JL (1999a) Metamorphosis in the summer flounder, Paralichthys dentatus: thyroidal status influences salinity tolerance. J Exp Zool 284:414-424. https://doi.org/10.1002/(SICI)1097-010X(19990901)284:4<414::AID-JEZ8>3.0.CO;2-E
  31. Schreiber AM, Specker JL (1999b) Early larval development and metamorphosis in the summer flounder: changes in percent whole-body water content and effects of altered thyroid status. J Fish Biol 55:148-157.
  32. Seidelin M, Madsen SS (1999) Endocrine control of $Na^{+}$,$K^{+}$-ATPase and chloride cell development in brown trout (Salmo trutta): interaction of insulin-like growth factor-I with prolactin and growth hormone. J Endocrinol 162:127-135. https://doi.org/10.1677/joe.0.1620127
  33. Shrimpton JM, McCormick SD (1998) Regulation of gill cytosolic corticosteroid receptors in juvenile atlantic salmon: Interaction of growth hormone with prolactin and triiodothyroine. Gen Comp Endocrinol 112:262- 274. https://doi.org/10.1006/gcen.1998.7172
  34. Szischa V, Papandroulakis N, Pavlidis M (2005) Ontogeny of the thyroid hormones and cortisol in the gilthead sea bream, Sparus aurata. Gen Comp Endocrinol 142: 186-192. https://doi.org/10.1016/j.ygcen.2004.12.013
  35. Vijayan MM. Pereira CE, Grau G, Iwama GK (1997) Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp Biochem Physiol 116C:89-95.
  36. Walpita CN, Grommen SVH, Darras VM, Van der Geyten S (2007) The influence of stress on thyroid hormone production and peripheral deiodination in the Nile tilapia (Oreochromis niloticus). Gen Comp Endocrino. 150:18-25. https://doi.org/10.1016/j.ygcen.2006.07.002
  37. Wendelaar Bonga SE (1993) Endocrinology. In: Evans, D.H. (Eds.), The Physiology of Fishes. CRC Press Boca Raton FL pp 469-502.
  38. Wendelaar Bonga SE (1997) The stress response in fish. Physiol Rev 77:91-625.
  39. Yada T, Ito F (1999) Sodium-retaining effects of cortisol, prolactin, and estradiol-17${\beta}$ in medaka Oryzias latipes exposed to acid water. Fisheries Science 65:405-409.