Journal of Korea Multimedia Society Vol. 12, No. 12, DECEMBER 2009(pp. 1710-1717)

A

Garbage Collection Method for Flash Memory Based
on Block-level Buffer Management Policy

T \iaa

Liangbo Li", Song-Sun Shin™, Yan Li"™", Sung-Ha Baek , Hae-Young Bae

ABSTRACT

Flash memory has become the most important storage media in mobile devices along with its attractive
features such as low power consumption, small size, light weight, and shock resistance. However, a
flash memory can not be written before erased because of its erase-before-write characteristic, which
lead to some garbage collection when there is not enough space to use. In this paper, we propose a
novel garbage collection scheme, called block-level buffer garbage collection. When it is need to do merge
operation during garbage collection, the proposed scheme does not merge the data block and corresponding
log block but also search the block-level buffer to find the corresponding block which will be written
to flash memory in the next future, and then decide whether merge it in advance or not. Qur experimental
results show that the proposed technique improves the flash performance up to 4.6% by reducing the

unnecessary block erase numbers and page copy numbers.

Key words: Flash Memory, Garbage Collection, Buffer manager, Block-level Buffer

1. INTRODUCTION

Recent advances in processors, memory, stor—
age, and connectivity have paved the way for next
generation applications that are data-driven,
whose data can reside anywhere and that support

¥ Corresponding Author : Hae-Young Bae, Address:
(402-751) Hitech-Center 1008%, 253 Younghyun-dong
Nam-gu, Incheon 402-751 South Korea, TEL : +82-32-860-
8712, FAX : +82-32-862-9845, E-mail : hybae@inha.ac.kr
Receipt date : July 1, 2009, Revision date : Sep. 1, 2009
Approval date : Dec. 10, 2009
fDepau‘tment of Computer Science & Information
engineering, INHA University
(E-mail : liliangbohost@gmail.com)
T Department of Computer Science & Information
engineering, INHA University
(E-mail : hermit@dblab.inha.ac.kr)
i Department of Computer Science & Information
engineering, INHA University
(E-mail : leeyeon@dblab.inha.ac kr)
Department of Computer Science & Information
engineering, INHA University
(E-mail : shbaek@dblab.inha.ac kr)
Department of Computer Science & Information
engineering, INHA University
¥ This research is supported by INHA University.

haaad

tErEE

access from anywhere. Memory sizes have gone
up and prices have come down significantly. With
advances in flash memory technology, large flash
drives are available at reasonable prices [1].

Flash memory is being rapidly deployed as data
storage for mobile devices such as PDAs, MP3
players, mobile phones, and digital cameras, mainly
because of its low electronic power, nonvolatile
storage, high performance, physical stability, and
portability [2].

Compared to hard disk storage media with the
inevitable mechanical delay in accessing data, flash
memory provides fast uniform random access.
However, flash memory is characterized by its
erase-before-write operation;, it must be erased
before new data is written to a given physical
location. Unfortunately, write operations are per-
formed in unit of sector, while erase operations are
executed in unit of block, usually, a block consists
of many sectors [5]. Due to these features, a special
software called FTL (Flash Translation Layer) is
employed, which handles the algorithmic se-
quences of read, write and erase operations of flash

A Garbage Collection Method for Flash Memory Based on Block-level Buffer Management Policy 1711

memory. The main function of FTL is to map the
storage interface logical blocks to physical pages.

The buffer mechanism is also used in many
PMPs (Portable Media Players). When the host
system writes data to flash memory, the data will
be written to buffer firstly. If the buffer has no
space to accommodate new coming data, the least
recently used data will be selected as victim and
then flushed to flash memory. This mechanism can
reduce write operations to flash memory when
there are lots of hot page write commands.

In this paper, we propose a novel garbage collec-
tion method. When FTL need to merge blocks dur-
ing the garbage collection steps, it will refer to the
contents of buffer. By examining the contents of
buffer, FTL copies the best corresponding buffer
block to flash memory or selects the appropriate
block as victim block to improve the performance
of flash-based storage system. In shortly, we focus
on three issues in this paper. First, we discuss the
process that how does a block-level buffer flush
data to flash memory; then, we present the novel
garbage collection method; finally, we introduce
the victim block selection technique.

The rest of this paper is organized as follows.
In section 2, we briefly talk about the background
and related work. Section 3 presents the motivation
of the proposed method. Section 4 describes the de-
tails of our technique. Experimental results are
presented in section 5. Finally, we conclude our

work in section 6.

2. BACKGROUND AND RELATED WORK

2.1 Flash Memory

Flash is non-volatile, provides reasonable sizes
at affordable prices, and significant advances are
taking place in its storage. The capacities are in-
creasing and prices are coming down [1].

Compared with magnetic disks, flash memory
has many significant different characteristics.

No latency. Flash memory has no latency asso-

clated with the mechanical head movement to lo-
cate the proper position to read or write data. In
magnetic disks, this seek time have been one of
the most time-consuming parts in I/O activity [7].

No in-place-update: The previous data should
be erased first in order to overwrite another data
in the same physical area. The worse problem is
that the erase operation cannot be performed on the
particular data selectively, but on the whole block
containing the original data [9].

Asymmetric operation costs. For flash memo—
ry, read operations are faster than write operations.
Because of a write request always involves some
erase operations, its entail behavior will cost
longer.

Uneven wear-out. After specified number of
write/erase operations, the blocks of flash memory
will be worn out. Once the number is reached, the
block cannot be used any more. Therefore, flash
memory requires a well-designed garbage collec—
tion scheme to evenly wear out the flash memory

region.

2.2 Flash Translation Layer

Different types of FTL algorithms exist. The
main goal of FTL is to translate from logical sec—
tors to physical sectors. The mapping between the
logical address and the physical address can be
managed at the sector, block, or hybrid level. The
disadvantage of sector-level mapping is that the
size of mapping table is too large to be viable in
the current flash memory-packaging technology.
The block-level mapping also has a serious pitfall:
when an overwrite request for a logical sector is
necessary, the corresponding block is remapped to
a free physical block. In the hybrid scheme, in ad-
dition to a block-level mapping table, a sector-lev-
el mapping table for a limited number of blocks is
maintained. Thus, it satisfies the size limitations
of mapping information and also mitigates the re—
mapped problem drastically [4].

Hybrid mapping scheme is known as log block

1712 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 12, NO. 12, DECEMBER 2009

scheme. The key idea of log scheme is to maintain
a small number of log blocks in flash memory to
serve as write buffer blocks for overwrite
operations. When an overwrite operation occurs
with the same logical page data, the incoming data
is written to a free page and the previous data be-
comes invalid. There are three kinds of approaches
depending on the block association policy,
block-associative sector translation (BAST) [6],
fully-associative sector translation (FAST) [3] and
set-associative sector translation (SAST) [5]. In
the BAST scheme, a log block is used for only data
block. In the FAST scheme, a log block can be used
for several data blocks. In the SAST scheme, a set
of log blocks can be used for a set of data blocks.
Generally, a round robin policy is used in selecting
a victim log block, but all these existing schemes
have no consideration on the buffer.

2.3 Flash Buffer Cache

There are not many researches on the buffer
cache in flash memory systems. Clean first LRU
(CFLRU) [7] is a buffer cache management algo-
rithm for flash storage. It attempts to choose a
clean page as a victim rather than dirty pages be~
cause writing cost is much more expensive. The
flash aware buffer policy (FAB) [9] is another buf-
fer cache management policy used for flash
memory. In FAB, the buffers that belong to the
same erasable block of flash memory are grouped
together. When the buffer is full, all pages in the
same block are evicted to flash memory; this algo—
rithm reduces the garbage collection cost. BPLRU
[8] is another‘ buffer management scheme which
especially improves the performance of random
writes. This scheme also uses the block-level buf-
fer replacement like FAB, but it allocates and man-
ages buffer memory only for write requests. These
schemes handled only the buffer cache manage-
ment, but not consider the garbage collection and
did not refer to the FTL mechanism.

3. MOTIVATION

In this section, we will explain the motivation
and benefits of our approach. When the garbage
collector merges blocks to reclaim them, a large
number of pages should be migrated, ie. read dirty
pages and write to new blocks, but it is possible
that a few of these pages has been overwritten in
a block-level buffer before they are migrated.
Consider an example described below:

Figure 1 is a block-level buffer, when there is
no free space in buffer, the least recently used
block is selected as a victim block, and all sectors
in the victim block are flushed to flash memory.
In this example, block 3 is selected as the victim
block, and sectors 12 and 15 are flushed. Next will
be block 1, sectors 5 and 6 will be flushed to memo—
ry in the shortly future.

Figure 2 shows an example of merging blocks
in the FAST scheme [3]. BO and Bl are data blocks,

Block 2 Block 5 Block 3

Fig. 1. Block-level buffer

Victim Log Block

% Log

! Blocks

ot

!

Page

New
Blocks

Fig. 2. A process of merging blocks

A Garbage Collection Method for Flash Memory Based on Block-level Buffer Management Policy 1713

L0 is a log block. Each block consists of four pages.
When new page update comes, the new page will
be written on log blocks corresponding to data
blocks if there is no empty space in data blocks,
and then the original pages in data blocks are set
as invalidated. As show, pages 0, 1, 6 and 7 in data
blocks B0 and Bl are set as invalidated. If the gar—
bage collector selects the log block LO as a victim
block, new data blocks NO and N1 are allocated and
valid pages in B0, B1 and LO are moved to NO and
N1. After the page migration, blocks B0, Bl and
LO are erased.

When merging log block and data blocks in flash
memory, if we can examine the block-level buffer,
we find that moving sector 5 and 6 to new data
block is unnecessary because they will be in-
validated shortly when the block 1 in buffer is
evicted to flash memory. If we can move sector
5 and 6 from buffer instead of Bl and L0, we can

avoid lots of potential page migration.

4. BUFFER-AWARE BLOCK MERGE

In order to avoid potential page migrations, we
should refer to the content of buffer during the
block merge. If we find the corresponding block in
the buffer when we do merge operation, it may be
a good idea to flush it to flash memory in advance.
But there exists a trade—off between merge per-
formance and the buffer hit ratio. When hot pages
are selected to flush into flash memory, the buffer
hit ratio will decrease. In this situation, it is benefi-
cial to choose another log block as victim log block.
In this section, we first introduce an approach fo—
cus on how does block-level buffer flush data to
flash memory, then we will propose a garbage col-
lection method based on block-level buffer, finally

we discuss the victim block selection technique.

4.1 Block-level buffer to flash memory

When the buffer is full that can not allocate any

space to the new coming pages, the least recently

used block is selected as a victim block, and all
the sectors in the victim block are flushed from the
buffer to flash memory. This is the basic policy
used in block-level buffer management.

In the general FAST scheme, if an individual
logical sector write operation comes from the file
system, the FAST will examine whether the corre—
sponding physical sector is empty or not. If it is
empty, the sector is written to the corresponding
data block, otherwise, the sector is written to the
log blocks which shared to any data block.

When the file system uses the block-level buffer
to manage the write operations, the write requests
will be executed block by block. In other words,
all the sectors belong to the same block which re—
sides at the end of the buffer list should be written.
In this case, the write requests consist of several
write operations. As an example of figure 1, when
block 3 is selected as the victim block, sector 12
and 15 are written to flash memory at the same
time.

Above all, combining the FAST scheme in flash
memory and block-level buffer in file system, a
write request need one or several sector write

operations.

4.2 Buffer-aware block merge

If no more empty sectors exist in the log blocks,
the proposed garbage collection approach chooses
one of the log blocks as victim and merges the vic—-
tim block with its corresponding data blocks and
the corresponding buffer blocks. The victim se—
lection will be discussed in next section.

The merge operation proceeds as follows:

First, given a log block as victim block, find the
corresponding data blocks and allocate the same
amount of free blocks.

Second, search the buffer to find whether there
exists blocks which have the same number to the
corresponding data blocks or not.

Third, flush the sectors in buffer blocks to free
blocks, and copy the most up-to—data version from

1714 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 12, NO. 12, DECEMBER 2009

T
||

1
Ik

;
!
!
!
!
i
| ! ¢
bt —
. f
AN R
[l] -
19 ;4 J 15
[\ [
! !

Invalid [
Page
Data
Blocks

New
Blocks

Fig. 3. Merge blocks refer to contents of buffer

the log blocks to free blocks, then fills each empty
sector in the free block with its corresponding sec—
tor in the data blocks.

Fourth, erase the log block and corresponding
data blocks.

Consider an example as shown in figure 3. When
log block L0 is selected as victim block, we find
that BO and Bl are its corresponding data block
and there also exists block 1 in the buffer. Next,
sector 5 and 6 in buffer are first flushed into new
blocks, then copy sector 0, 1 and7 in log block to
new blocks, finally fill the empty sectors using
sector 2, 3 and 4 in data blocks. After merge all
the blocks, erase log block 1O and data blocks B0
and Bl. Figure 4 shows the buffer aware merge
algorithm.

4.3 Victim block selection

In step two of the proposed approach, there may
cause three situations according whether the
blocks which have the same number to corre-
sponding data blocks in buffer is found or not.

1): Not found. In this case, the garbage collection

Input:

LogBlock: Victim log block

Output:

Return: Block erase numbers and page copy numbers
Value:

pNumlLogBlock: Page numbers in LogBlock
dataBlockVector: Store data block number
sizeDBV: Size of data block vector
newBlock: New block for merging
mergeBlockAwareBuffer(LogBlock)
Begin

01: for 1 =0 to pNumLogBlock

02: if page in LogBlock is valid

03: Store page to dataBlockVector

04: end if

05: end for

06: Allocate new block newBlock

07: for j = 0 to sizeDBV

08: searchBuffer()

09: if searchBuffer() is true

10: write block from buffer to newBlock
11: remove block from buffer

12! end if

13: if page in data block is valid

14t write page from data block to newBlock
15! end if

16: if page in log block is valid

17: write page from log block to newBlock
18: end if

19: erase data block

20: erase log block

End

Fig. 4 Buffer aware merge algorithm

only need merge the log block and its correspond-
ing data blocks. This process is done like the buf—
fer-unaware merge operation.

2): Found and the found blocks belong to the
least recently used blocks. If the blocks locate at
the near end of the buffer list, that means these
blocks will be flushed to flash memory in the
shortly future. It is appropriate to move these sec—
tors in the buffer into the new free blocks.

3): Found but the found blocks are hot blocks.
In this case, the blocks locate at the near start of
the buffer list, which means these sectors in the
found blocks will be updated frequently. If we
choose these blocks to flush to flash memory, the
buffer hit ratio will decrease.

Therefore, it is beneficial to find another log

A Garbage Collection Method for Flash Memory Based on Block-level Buffer Management Policy 1715

block as victim log block.

Here we use a novel concept named locality
probability to judge the importance of the block in
the buffer. The idea of locality probability is de-
scribed as follows:

We assume the current number of blocks in buf-
fer is n, the basic locality probability of the block
which reside in the end of the buffer list is p, which
is the lowest value, the difference value between
two blocks is x, this means the locality probability
of the front block is larger than its back block, and
their difference value is x, the total sum of all block
locality probability is 1. So we get:

P+ (ptx)+ (p+2x) + +(ptm-DHx)=1

If we set the difference value x a specific value,
according to the number n, we can calculate the
basic locality probability p and the locality proba-
hility of every block. In the real world, set a thresh—
old of the locality probability depending on specific
devices. The blocks whose locality probability
larger than the threshold considered as hot blocks,
and less than the threshold considered as least re-
cently used blocks.

5. EXPERIMENTS

5.1 Experimental environments

In our experiments, we simulate the flash mem-
ory and buffer cache, then comparing the results
of our method and the others which collect garbage
don’t refer to the contents of buffer. As mentioned
above, the proposed method will generate the block
erase number and page copy number, so we get
this information as the results to compare the
performance.

All the experiments are done in windows XP op-
erating system and based on Microsoft visual stu—
dio 2005.

5.2 Experimental results

We assume that every block consists of 4 pages,

the flash memory has 100 blocks, and the log block
group has 10 log blocks, the buffer can maintain
10 blocks when it is full. The data are inputted
randomly. We input data by the amount of 100 pa—
ges, 200 page, 300 pages, 350 pages and 390 pages,
the results are shown as figure 5 and figure 6.

In figure 5 , X-axis denotes the random input
page number for write to flash memory and Y-axis
represents the numbers when erasing blocks and
copying pages. Since the input is random, when the
input page number is 100 which is more less than
the total page number of flash memory, there need
not any merge operation. From the figure, we find
that the proposed method can reduce more block
erase numbers and page copy numbers as the input
page numbers increase. Especially, the proposed
method reduces page copy number more than block
erase number.

In figure 6, the line marked diamond denotes the
page copy number by buffer unaware method, and
line marked circle represents page copy number by

our proposed method, marked rectangle line denotes

‘Barfer wavare bl occk erase
300 nunber ‘
L} H ock
250 Bﬁfe: avare bl ock erase e
20 - O Buffer wavare page copy !,,,
@ nuner
S iOBffer avare page copy —
150
L. nunier R
100
50
0 R— | -
100 X0 300
Input page nunber
Fig. 5. Simulation results
350 T
—&-Byffer unavare bl ock erase nunber
300 ! —e—Buffer unawere page copy nunber B i—‘i -
a5p + ¢ —A—Buffer avere block erase nutber | N
~i-Buffer avare page copy numier
33)0
50 ¢
100 }
50
0 oy S
100 200 300 350 390
Input page nunber

Fig. 6. Compare with two kinds approach

1716 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 12, NO. 12, DECEMBER 2009

BBuffer urevare bl ock erase’

100000 | — Nunber O —
: :MBuffer unavare page copy
| | _nunber i
! iOBuffer avere bl ock erase [
i nunber

- & 60000 [DBffer avare page copy
nunber

i L

27000 28000 29000 30000 31000
Input page nunber

Fig. 7 The results of increasing input page number

buffer unaware block erase number, and marked
triangle line represents buffer aware block erase
number. From the figure, it is clear that the pro-
posed method reduces the costs compared buffer
unaware buffer method.

Next we simulate a real size flash memory
whose capacity is 16MB. The results are shown
as figure 7.

We assume that in the 16MB flash memory, the
size of page is 512KB, a block consists of 64 pages,
log block size is 128, and buffer length is 32.

When the flash memory is not very full, the pro-
posed method can save more unnecessary costs.
When the flash memory reach full nearly, the saved
costs fall down because the flash cannot accom-
modate any more pages .In generally, the proposed
method can reduce block erase number and page
copy number by 4.6% and 4.7%. On the other word,
the performance of flash memory is improved 4.6%.

6. CONCLUSION AND FUTURE WORK

A We have presented a block-level buffer aware
garbage collection technique which searches the
contents of buffer when merging blocks to reduce
the garbage collection cost. This method can im-
prove the efficiency of the block merge by reducing
the potential unnecessary block erase numbers and
page copy numbers. OQur experiments show that
the proposed method can improve the performance
up to 4.6%. The victim block selection approach
improves the I/O performance but does not de-
crease the buffer hit ratio by selecting a proper

block as victim block using the concept of locality
probability.

In the future work, we will give an explicit anal—
ysis about locality probability to make the best
performance between buffer hit ratio and the flash

blocks merge cost.

REFERENCES

[1] DB. Lomet, “Bulletin of the Technical
Committee on Data Engineering,” IEEE
Computer Society, Vol. 30, No. 3, Sep. 2007.

[2] E. Gal and S. Toledo, “Algorithms and data

flash memories,” ACM
Computing Surveys, 2005.

[31 SW. Lee, D.J. Park, T.S. Chung, DH. Lee,
S.W. Park and H.J. Song, “A log buffer-based

flash translation layer using fully—associative

structures for

»

sector translation,” ACM Transactions on
Embedded Computing Systems, Vol. 6, No.3,
2007.

[4] C. Park, WM. Cheon, J.G. Kang, K.G. Roh,
W.H. Cho and J.S. Kim, “A reconfigurable
FTL architecture for NAND flash-based ap—
plications,” ACM Transactions on Embedded
Computing Systems, Vol. 7, No. 4, 2008.

[5] J.U. Kang, H.S. Jo,]J.S. Kim, and JW. Lee,
“A super block-based flash translation layer
for NAND flash memory,” International
Conference On Embedded Software, pp.
161-170, 2006.

[6] J. Kang, JM. Kim, S.H. Noh, S.L. Min and
Y. Cho, “A space-efficient flash translation
layer for compact flash systems,” IEEE
Transactions on Consumer Electronics, Vol.
48, No.2, pp. 366-375, 2006.

[7] S.Y. Park, D.W. Jung, J.U. Kang,].S. Kimand
JW. Lee, “CFLRU: a replacement algorithm
for flash memory,” International Conference
on Compilers, Architecture and Synthesis for
Embedded Systems, pp. 234-241, 2006.

[8]1 H. Kim, and S.J. Ahn, “BPLRU: a buffer man-

A Garbage Collection Method for Flash Memory Based on Block-level Buffer Management Policy 1717

agement scheme for improving random writes
in flash storage,” Proceedings of the 6th
USENIX Conference on File and Storage
Technologies, 2008.

[9] H. Jo, J.U. Kang, J.S. Kim, and J. Lee, “FAB:
Flash-aware buffer management policy for
portable media players,” IEEE Transactions
on Consumer Electronics, Vol. 52, No.2, pp.
485-493, 2006.

[10] L.P. Chang and T.W. Kuo, “An efficient man-
agement scheme for large-scale flash-memo-
ry storage systems,” Symposium on Applied
Computing, pages 862-868, 2004.

[11] K.H. Parkand S.H. Lim, “An Efficient NAND
flash file system for flash memory storage,”
IEEE Transactions on Computers, Vol. 55, pa-
ges 906-912, 2006.

[12] Intel Corporation, ,“Understanding the Flash
Translation Layer (FTL) Specification,”
White Paper, http://www.embeddedfreebsd.
org/Documents/Intel-FTL.pdf, 1998.

Liangbo Li

2003. 9~2007. 7 Dept. of Com—
puter Science and tech-
nology, ChongQing Univ.
of Post and Telecom.
China.(B.S)

2008. 2~ present Dept. of Com—
puter Science and Engineer—
ing, Inha Univ.(MS)

Flash Memory, Database, Data Stream Management.

Song-Sun Shin

2006 Dept. of Computer Edu-
cation, Seowon Univ.(B.S)

2008 Dept. of Computer Science
and Engineering, Inha
Univ.(M.S)

2008 ~Present Dept. of Infor-
mation Technology, Inha

Univ. (Ph.D)
Spatial Database, Grid Database, LBS, u-GIS, Data
Stream Management System

Yan Li

2002 Dept. of GIS Engineering,
Univ. of Post and Telecom.
China(B.S)

2006 Dept. of Computer Science
and Engineering, Inha
Univ.(M.S)

2008 ~Present Dept. of Infor-
mation Technology, Inha Univ.(Ph.D)

Spatial Database, Spatial Data Warehouse, GIS, USN,
Data Stream Management System

Sung-Ha Baek

2001 Dept. of Computer Tech-
nology (B.S)

2005 Dept. of Computer Science
and Engineering, Inha
Univ.(M.S)

2007 ~Present Dept. of Infor-
mation Technology, Inha.
(Ph.D)

Data Stream Management, Cluster System, LBS

Hae-Young Bae

1974 Dept. of Applied Physics,
Inha University(B.S)

1978 Dept. of Computer Science
and Engineering, Yonsei
Univercity.(M.S)

1989 Dept. of Computer Science
and Engineering, Soongsil
University.(Ph.D)

1985 Guest Professor, Univ. of Houston

1982 ~Present, Professor, Dept. of Computer Science
and Information Engineering, Inha University

1999~ Present, Director, Intelligent GIS Research
Center

2000~ Present, Chongqing
University of Posts and Telecommunication,
China

2006~2009 Director, Graduate School, Inha University.

Distributed database, Spatial database, Geometric in-
formation system, Multimedia database

Emeritus Professor,

