참고문헌
- ASTM C39 (2001), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM C39M-01, Annual Book of ASTM Standards, 4(2), 18-22.
- ASTM C109/C109M-99 (2001), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in or [50 mm] Cube Specimens), Annual Book of ASTM Standards, 4(1), 83-88.
- ASTM C 1202 (2001), Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration, ASTM C1202-97, Annual Book of ASTM Standards, 4(2), 646-651.
- Bijen, J. (1996), "Benefits of slag and fly ash", Constr. Build. Mater., 10(5), 309-314. https://doi.org/10.1016/0950-0618(95)00014-3
- Chindaprasirt, P., Jaturapitakkul, C. and Sinsiri, T. (2005), "Effect of fly ash fineness on compressive strength and pore size of blended cement paste", Cement Concrete Comp., 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
- Chindaprasirt, P., Homwuttiwong, S. and Jaturapitakkul, C. (2007), "Strength and water permeability of concrete containing palm oil fuel ash and rice husk-bark ash", Constr. Build. Mater., 21(7), 1495-1499.
- Chindaprasirt, P., Rukzon, S. and Sirivivatnanon, V. (2008), "Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash", Constr. Build. Mater., 22, 932-938. https://doi.org/10.1016/j.conbuildmat.2006.12.001
- Isaia, G.C., Gastaldini, A.L.G. and Moraes, R. (2003), "Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete", Cement Concrete Comp., 25, 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9
-
Otsuki, N., Nagataki, S. and Nakashita, K. (1993), "Evaluation of
$AgNO_3$ solution spray method for measurement of chloride penetration into hardened cementitious matrix materials", Constr. Build. Mater., 7(4), 195-201. https://doi.org/10.1016/0950-0618(93)90002-T - Poon, C.S., Wong, Y.L. and Lam, L. (1997), "The influence of different curing conditions on the pore structure and related properties of fly ash cement pastes and mortars", Constr. Build. Mater., 11(7-8), 383-393. https://doi.org/10.1016/S0950-0618(97)00061-5
- Rukzon, S. and Chindaprasirt, P. (2008), "Mathematical model of strength and porosity of ternary Portland rice husk ash and fly ash cement mortar", Comput. Concrete, 5(1), 75-78. https://doi.org/10.12989/cac.2008.5.1.075
- Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007), "Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete", Constr. Build. Mater., 21(7), 1589-1598. https://doi.org/10.1016/j.conbuildmat.2005.09.011
- Thomas, M.D.A. and Bamforth, P.B. (1999), "Modelling chloride diffusion in concrete: effect of fly ash and slag", Cement Concrete Res., 29(4), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
- Tumidajski, P.J. and Chan, G.W. (1996), "Boltzmann-matano analysis of chloride diffusion into blended cement concrete", J. Mater. Civil Eng., 8(4), 195-200. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:4(195)
- The Road and Traffic Authority (2001), Test method RTA T362-Interim test for verification of curing regime-Sorptivity, Australia, February, 1-3.
피인용 문헌
- One and two dimensional chloride ion diffusion of fly ash concrete under flexural stress vol.12, pp.9, 2011, https://doi.org/10.1631/jzus.A1100006
- Permeability and abrasion resistance of concretes containing high volume fine fly ash and palm oil fuel ash vol.10, pp.4, 2012, https://doi.org/10.12989/cac.2012.10.4.349
- Utilization of bagasse ash in high-strength concrete vol.34, 2012, https://doi.org/10.1016/j.matdes.2011.07.045
- Strength, porosity, and chloride resistance of mortar using the combination of two kinds of pozzolanic materials vol.20, pp.8, 2013, https://doi.org/10.1007/s12613-013-0800-x
- Strength and chloride resistance of the blended Portland cement mortar containing rice husk ash and ground river sand vol.48, pp.11, 2015, https://doi.org/10.1617/s11527-014-0438-9