References
- ACI Committee 318 (2005), Building Code Requirements for Reinforced Concrete and Commentary ACI 318M-05, Manual of Concrete Practice, American Concrete Institute, Michigan, USA, 436.
- Au, F.T.K and Bai, Z.Z. (2006), "Effect of axial load on flexural behaviour of cyclically loaded RC columns", Comput. Concrete, 3(4), 261-284. https://doi.org/10.12989/cac.2006.3.4.261
- Au, F.T.K., Bai, Z.Z. and Kwan, A.K.H. (2005), "Complete moment-curvature relationship of reinforced normaland high-strength concrete beams experiencing complex load histroy", Comput. Concrete, 2(4), 309-324. https://doi.org/10.12989/cac.2005.2.4.309
- Au, F.T.K. and Kwan, A.K.H. (2004), "A minimum ductility design method for non-rectangular high-strength concrete beams", Comput. Concrete, 1(2), 115-130. https://doi.org/10.12989/cac.2004.1.2.115
- Attard, M.M. and Setunge, S. (1996), "The stress strain relationship of confined and unconfined concrete", ACI Mater. J., 93(5), 432-442.
- Bayrak, O. and Sheikh, S.A. (1997), "High strength concrete columns under simulated earthquake loading", ACI Struct. J., 94(6), 708-722.
- Bayrak, O. and Sheikh, S.A. (1998), "Confinement reinforcement design consideration for ductile HSC columns", J. Strut. Eng-ASCE, 124(9), 999-1010. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(999)
- Bechtoula, H., Sakashita, M., Kono, S. and Watanabe, F. (2005), "Seismic performance of 1/4-scale RC frames subjected to axial and cyclic reversed lateral loads", Comput. Concrete, 2(2), 147-164. https://doi.org/10.12989/cac.2005.2.2.147
- Buildings Department (2004), Code of Practice for Structural Use of Concrete 2004, The Government of Hong Kong Special Administrative Region, 180.
- Carreira, D.J. and Chu, K.H. (1986), "The moment-curvature relationship of reinforced concrete members", ACI ACE J. Proceed., 83(2), 191-198.
- Chung, Y.S., Park, C.K. and Lee, E.H. (2004), "Seismic performance and damage assessment of reinforced concrete bridge piers with lap-spliced longitudinal steels", Struct. Eng. Mech., 17(1), 99-112. https://doi.org/10.12989/sem.2004.17.1.099
- Chung, Y.S., Park, C.K. and Lee, D.H. (2006), "Seismic performance of RC bridge piers subjected to moderate earthquakes", Struct. Eng. Mech., 24(4), 429-446. https://doi.org/10.12989/sem.2006.24.4.429
- European Committee for Standardization (2004), Eurocode 2: Design of concrete structures: Part 1-1: General rules and rules for buildings, UK, 225.
- Fafitis, A. and Shah, S.P. (1985), "Prediction of ultimate behavior of confined columns subjected to large deformations" ACE J. Proceed., 82(4), 423-433.
- Galal, K. (2007), "Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement", Struct. Eng. Mech., 25(1), 75-89. https://doi.org/10.12989/sem.2007.25.1.075
- Ho, J.C.M., Kwan, A.K.H. and Pam, H.J. (2004), "Minimum flexural ductility design of high-strength concrete beams", Mag. Concrete Res., 56(1), 13-22. https://doi.org/10.1680/macr.2004.56.1.13
- Ho, J.C.M., Au, F.T.K. and Kwan, A.K.H. (2005), "Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams", Struct. Eng. Mech., 19(2), 185-198. https://doi.org/10.12989/sem.2005.19.2.185
- Kim, J.H. (2005), "Ductility enhancement of reinforced concrete thin wall", Comput. Concrete, 2(2), 111-123. https://doi.org/10.12989/cac.2005.2.2.111
- Kim, T. and Kim, J. (2007), "Seismic performance evaluation of a RC special moment frame", Struct. Eng. Mech., 27(6), 671-682. https://doi.org/10.12989/sem.2007.27.6.671
- Kim, T.H., Park, J.G., Kim, Y.J. and Shin, H.M. (2008), "A computation platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars", Comput. Concrete, 5(2), 135-154. https://doi.org/10.12989/cac.2008.5.2.135
- Kwan, A.K.H., Ho, J.C.M. and Pam, H.J. (2002), "Flexural strength and ductility of reinforced concrete beams", P. I. Civil Eng-Str. B., 152(4), 361-369.
- Kwan, A.K.H., Au, F.T.K. and Chau, S.L. (2004), "Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams", Mag. Concrete Res., 56(5), 299-309. https://doi.org/10.1680/macr.2004.56.5.299
- Li, B., Park, R. and Tanaka, H. (1991), "Effect of confinement on the behaviour of high strength concrete columns under seismic loading", Proceedings of the 5th Pacific Conference on Earthquake Engineering, Auckland, November.
- Lu, X. and Zhou, Y. (2007), "An applied model for steel reinforced concrete columns", Struct. Eng. Mech., 27(6), 697-711. https://doi.org/10.12989/sem.2007.27.6.697
- Maghsoudi, A.A. and Bengar, H.A. (2006), "Flexural ductility of HSC members", Struct. Eng. Mech., 24(2), 195-212. https://doi.org/10.12989/sem.2006.24.2.195
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng-ASCE, 114(8), 1804-1825. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
- Marefat, M.S., Khanmohammadi, M., Bahrani, M.K. and Goli, A. (2005), "Cyclic load testing and numerical modelling of concrete columns with substandard seismic details", Comput. Concrete, 2(5), 367-380. https://doi.org/10.12989/cac.2005.2.5.367
- Mendis, P.A., Kovacic, D. and Setunge, S. (2000), "Basis for the design of lateral reinforcement for high-strength concrete columns", Struct. Eng. Mech., 9(6), 589-600. https://doi.org/10.12989/sem.2000.9.6.589
- Ministry of Construction (2002), Code for Design of Concrete Structures GB 50010-2002, People's Republic of China, 96.
- Park, R. and Paulay, T. (1975), Reinforced Concrete Structures, Wiley, New York, U.S.A., 769.
- Razvi, S.R. and Saatcioglu, M. (1994), "Strength and deformability of confined high-strength concrete columns", ACI Struct. J., 91(6), 1-10.
- Rubinstein, M., Moller, O. and Giuliano, A. (2007), "Preliminary design and inelastic assessment of earthquakeresistant structural systems", Struct. Eng. Mech., 26(3), 297-313. https://doi.org/10.12989/sem.2007.26.3.297
- Sheikh, S.A., Shah, D.V. and Khoury, S.S. (1994), "Confinement of high-strength concrete columns", ACI Struct. J., 91(1), 100-111.
- Sung, Y.C., Liu, K.Y., Su, C.K., Tsai, I.C. and Chang, K.C. (2005), "A study on pushover analyses of reinforced concrete columns", Struct. Eng. Mech., 21(1), 35-52. https://doi.org/10.12989/sem.2005.21.1.035
- Standard Australia (2001), Australian Standard Concrete Structures AS 3600-2001, Australia, 175.
- Watson, S. and Park, R. (1994), "Simulated seismic load tests on reinforced concrete columns", J. Struct. Eng-ASCE, 120(6), 1825-1849. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1825)
- Wu, Y.F., Oehlers, D.J. and Griffith, M.C. (2004), "Rational definition of the flexural deformation capacity of RC column sections", Eng. Struct., 26, 641-650. https://doi.org/10.1016/j.engstruct.2004.01.001
Cited by
- Effectiveness of adding confinement for ductility improvement of high-strength concrete columns vol.32, pp.3, 2010, https://doi.org/10.1016/j.engstruct.2009.11.017
- Ductility Design of High-Strength Concrete Beams and Columns vol.13, pp.4, 2010, https://doi.org/10.1260/1369-4332.13.4.651
- Concurrent flexural strength and ductility design of RC beams via strain-gradient-dependent concrete stress-strain curve vol.24, pp.9, 2015, https://doi.org/10.1002/tal.1203
- Minimum deformability design of high-strength concrete beams in non-seismic regions vol.8, pp.4, 2011, https://doi.org/10.12989/cac.2011.8.4.445
- Maximum concrete stress developed in unconfined flexural RC members vol.8, pp.2, 2011, https://doi.org/10.12989/cac.2011.8.2.207
- Behaviour of uni-axially loaded concrete-filled-steel-tube columns confined by external rings vol.23, pp.6, 2014, https://doi.org/10.1002/tal.1046
- Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.237
- Confinement effect of ring-confined concrete-filled-steel-tube columns under uni-axial load vol.67, 2014, https://doi.org/10.1016/j.engstruct.2014.02.013
- Uni-axial behaviour of normal-strength CFDST columns with external steel rings vol.13, pp.6, 2012, https://doi.org/10.12989/scs.2012.13.6.587
- Recent developments in optimal reinforcement of RC beam and column sections vol.33, pp.4, 2011, https://doi.org/10.1016/j.engstruct.2010.12.038
- Experimental Tests on High-Strength Concrete Columns Subjected to Combined Medium Axial Load and Flexure vol.15, pp.8, 2012, https://doi.org/10.1260/1369-4332.15.8.1359
- Limited ductility design of reinforced concrete columns for tall buildings in low to moderate seismicity regions vol.20, pp.1, 2011, https://doi.org/10.1002/tal.610
- Behaviour of uni-axially loaded CFST columns confined by tie bars vol.83, 2013, https://doi.org/10.1016/j.jcsr.2012.12.014
- Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials vol.12, pp.6, 2013, https://doi.org/10.12989/cac.2013.12.6.831
- Improving strength, stiffness and ductility of CFDST columns by external confinement vol.75, 2014, https://doi.org/10.1016/j.tws.2013.10.009
- Identification of a suitable ANN architecture in predicting strain in tie section of concrete deep beams vol.46, pp.6, 2013, https://doi.org/10.12989/sem.2013.46.6.853
- Nonlinear analysis of service stresses in reinforced concrete sections-closed form solutions vol.10, pp.5, 2012, https://doi.org/10.12989/cac.2012.10.5.541
- Inelastic design of high-axially loaded concrete columns in moderate seismicity regions vol.39, pp.4, 2009, https://doi.org/10.12989/sem.2011.39.4.559
- Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement vol.3, pp.6, 2012, https://doi.org/10.12989/eas.2012.3.6.889
- Novel energy-based rational for nominal ductility design of very-high strength concrete columns (>100 MPa) vol.198, pp.None, 2009, https://doi.org/10.1016/j.engstruct.2019.109497