References
- Huang, C.L. (1999), Characteristics and Behaviors of Concrete, Chan's Arch Books, Taipei.
- Yeh, I.C. (2004), Applications of Artificial Neural Networks, Scholars books, Taipei.
- Yeh, I.C. (1998), "Modeling concrete strength with augment-neuron networks", J. Mater. Civil Eng., 10(4), 263-268. https://doi.org/10.1061/(ASCE)0899-1561(1998)10:4(263)
- Yeh, I.C. (1999), "Modeling of strength of high performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808.
- Kim, J.I., Kim, D.K., Feng, M.Q., and Yazdani, F. (2004), "Application of neural networks for estimation of concrete strength", J. Civil Eng., 16(4), 257-264. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Chen, L. (2003), "A study of applying macroevlutionary genetic programming to concrete strength estimation", ASCE, J. Comput. Civil Eng., 17(4), 290-294. https://doi.org/10.1061/(ASCE)0887-3801(2003)17:4(290)
- Chen, L., Tasi, C.S., and Chen, H.M. (2004), "A study of applying grammar evolution to concrete strength estimation", Chung Hua J. Sci. Eng., 2(2), 55-62.
- Hamid-Zadeh, N., Jamali, A., Nariman-Zadeh, N., and Akbarzadeh, H. (2007), "Prediction of concrete compressive strength using evolved polynomial neural networks", World Sci. Eng. Acad. Soc. T. Syst., 6(4), 802-807.
- Ahmet, O., Murat, P., Erdogan, O., Erdogan, K., Naci C., and Bhatti, M.A. (2006), "Predicting the compressive strength and slump of high strength concrete using neural network", Constr. Build. Mater., 20(9), 769-775. https://doi.org/10.1016/j.conbuildmat.2005.01.054
- Lien, L.C., Yeh, I.C., and Cheng, M.Y. (2006), "Modeling strength of high-performance concrete using genetic algorithms and operation tree", J. Tech., 21(1), 41-54.
- Davis, L. (1991), Handbook of Genetic Algorithms, Van Nostrand Reinhold, NY.
- Goldberg, D.E. (1989), Genetic Algorithms in Search Optimization and Machine Learning, Addison-Wesley Publishing Company, Massachusetts.
- Lei, I.J., Chang, S.C., Li, H.W., and Chou, C.M. (2005), An Introduce of GA Toolbox in MATLAB, Xidian University Press.
Cited by
- Determining ultimate bearing capacity of shallow foundations using a genetic programming system vol.23, pp.7-8, 2013, https://doi.org/10.1007/s00521-012-1150-8
- Modeling the compressive strength of cement mortar nano-composites vol.10, pp.1, 2012, https://doi.org/10.12989/cac.2012.10.1.049
- An Optimization System for Concrete Life Cycle Cost and Related CO2 Emissions vol.8, pp.4, 2016, https://doi.org/10.3390/su8040361
- Improving semi-empirical equations of ultimate bearing capacity of shallow foundations using soft computing polynomials vol.26, pp.1, 2013, https://doi.org/10.1016/j.engappai.2012.08.014
- Improving analytical models of circular concrete columns with genetic programming polynomials vol.14, pp.2, 2013, https://doi.org/10.1007/s10710-012-9176-3
- A Fuzzy Adaptive Resonance Theory-Based Model for Mix Proportion Estimation of High-Performance Concrete vol.32, pp.9, 2017, https://doi.org/10.1111/mice.12288
- Modeling concrete strength with high-order neural networks vol.27, pp.8, 2016, https://doi.org/10.1007/s00521-015-2017-6
- Polynomial modeling of confined compressive strength and strain of circular concrete columns vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.603
- Genetic algorithm in mix proportion design of recycled aggregate concrete vol.11, pp.3, 2013, https://doi.org/10.12989/cac.2013.11.3.183
- Assessment of the CO2 emission and cost reduction performance of a low-carbon-emission concrete mix design using an optimal mix design system vol.25, 2013, https://doi.org/10.1016/j.rser.2013.05.013
- A Study of Applying Genetic Algorithm to Predict Reservoir Water Quality vol.7, pp.2, 2017, https://doi.org/10.7763/IJMO.2017.V7.566
- A Study on the GA-Based Design for Recycled Aggregate Concrete vol.284-287, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.284-287.1225
- An evolutionary system for the prediction of high performance concrete strength based on semantic genetic programming vol.19, pp.6, 2017, https://doi.org/10.12989/cac.2017.19.6.651
- Knowledge-based learning for modeling concrete compressive strength using genetic programming vol.23, pp.4, 2009, https://doi.org/10.12989/cac.2019.23.4.255
- Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars vol.24, pp.4, 2009, https://doi.org/10.12989/cac.2019.24.4.329
- Hybrid Gaussian Process Inference Model for Construction Management Decision Making vol.19, pp.4, 2009, https://doi.org/10.1142/s0219622020500212