DOI QR코드

DOI QR Code

Finite element impact analysis for the design of structurally dissipating rock-shed

  • Zhang, Yi (Technical Direction, Spie batignolles TPCI) ;
  • Toutlemonde, Francois (Universite Paris Est-LCPC (Laboratoire Central des Ponts et Chaussees)) ;
  • Lussou, Philippe (Universite Paris Est-LCPC (Laboratoire Central des Ponts et Chaussees))
  • 투고 : 2008.01.18
  • 심사 : 2009.02.23
  • 발행 : 2009.04.25

초록

This paper presents finite element impact analysis for the design of Structurally Dissipating Rock-shed (SDR), an innovative design of reinforced concrete rock-shed. By using an appropriate finite element impact algorithm, the SDR structure is modelled in a simplified but efficient way. The numerical results are firstly verified through comparisons with the results of the experiments recently realized by ESIGEC and TONELLO I.C. It is shown that, using this impact algorithm, it is possible to correctly predict the SDR structural behaviour under different rock-fall impact conditions. Moreover, the numerical results show that the slab centre is the critical impact location for reinforced concrete slab design. The impact analyses have thus been focused on the impacts at the slab centre for the SDR structural optimization. Several series of parametric studies have been carried out with respect to load cases and engineering parameters choices. These numerical results support the robustness of the new SDR concept, and serve to optimize SDR structure and improve its conventional engineering design, especially for ensuring the slab punching shear resistance.

키워드

참고문헌

  1. Berthet-Rambaud, P. et al. (2003), "Structural modelling of reinforced concrete slabs subjected to falling rock impacts", Proceeding of Euro-C 2003 Conference, A.A Balkema Publishers, 599-604.
  2. CEB (1988), Concrete structures under impact and impulsive loading (synthesis report), Bulletin d'information, 187.
  3. Chanvillard, G. (2000), "Characterisation of fibre reinforced concrete mechanical properties: a review", BEFIB'2000, RILEM Proceedings PRO15, 29-49.
  4. Coussy, O. (1995), Mechanics of porous continua, John Wiley & Sons, Chichester, England.
  5. Delhomme, F. et al. (2005), "Behaviour of a structurally dissipating rock-shed: experimental analysis and study of punching effects", Int. J. Solids Struct., 42, 4204-4219. https://doi.org/10.1016/j.ijsolstr.2004.12.008
  6. Harsh, S. et al. (1990), "Strain-rate sensitive behaviour of cement paste and mortar in compression", ACI Mater. J., 87(5), 508-516.
  7. Humbert, P. et al. (2005), "CESAR-LCPC: A computation software package dedicated to civil engineering uses", Bulletin des Laboratoires des Ponts et Chaussees, 256-257, 7-37.
  8. IVOR (2001), Label IVOR : Couverture pare-blocs structurellement dissipante, Direction de la Recherche et des Affaires Scientifiques et Techniques, Ministere de l'Equipement, des Transports et du Logement, France (French government innovation label).
  9. Lussou, P. and Toutlemonde, F. (2005), "F.E.-aided optimization of energy dissipation in a new type of rock-sheds", 3rd International conference on Construction Materials : Performance, innovations and structural implications, CONMAT'05, Vancouver, 2005, Proc. ed. by N. Banthia et al., theme 1, chapter 12 Seismic Loading, Fatigue Loading, Impact Loading, and Blast Loading, 8 pp, abstract, 167.
  10. Lussou, P. et al. (2005), "Modelisation du beton en dynamique rapide avec le module MCCI de CESAR-LCPC", Bulletin des laboratoires des Ponts et Chaussees, Numero special CESAR-LCPC, 256-257, juillet-aout-septembre, 215-226.
  11. Mikami, H. et al. (1995), "Shock absorbing performance of a three-layered cushion system using RC core slab reinforced with AFRP rods", Concrete under Severe Conditions, E&FN Spon, 1633-1643.
  12. OFR (1998), Office federal des routes, Direction des travaux CFF, Actions sur les galeries de protection contre les chutes de pierres : directive, Berne, Suisse.
  13. Rossi, P. (1997), "Strain rate effects in concrete structures: the LCPC experience", Materials and Structures, (Hors serie-Report of the RILEM 50th General Council), 100, 54-62.
  14. Sercombe, J. (1997), Modelisation du comportement du beton en dynamique rapide : application au calcul des conteneurs a haute integrite, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussees, France.
  15. Sercombe, J. et al. (1998), "Viscous hardening plasticity for concrete under high rate dynamic loading", J. Eng. Mech., 124(9), 1050-1057. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:9(1050)
  16. Toutlemonde, F. and Rossi, P. (1995), "Major parameters governing concrete dynamic behaviour and dynamic failure of concrete structures", DYMAT J., 2(1), 69-77.
  17. Toutlemonde, F. and Rossi, P. (1996), "Are high-performance concretes (HPC) suitable in case of high rate dynamic loading?", the 4th International Symposium on Utilization of High-Strength/High-Performance Concrete, Presses de l'ENPC, Paris, 695-704.
  18. Toutlemonde, F. et al. (1999), "Developpement d'un conteneur pour l'entreposage de dechets nucleaires : resistance au choc", Revue Francaise de Genie Civil, 3(7-8), 729-756.
  19. Toutlemonde, F. and Gary, G. (2004), Comportement dynamique des betons et genie parasismique (Editeurs: J. MAZARS, A. MILLARD) - chapitre 1. Comportement dynamique du beton : aspects experimentaux, Lavoisier, Hermes Science ISBN 2-7462-0879-2, 21-76.
  20. Ulm, F.-J. and Coussy, O. (2001), "Some time and lengths scales in durability mechanics of concrete structures", Concrete Sci. Eng., 3(11), 121-134.
  21. Zhang, Y. (2006), Analysis and design of protective structures against rock falls, Ph.D. Thesis, Ecole Nationale des Ponts et Chaussees, France. (In French)