과제정보
연구 과제 주관 기관 : Korea Research Foundation
참고문헌
- Ababneh, A., Benboudjema, F. and Xi, Y. (2003), "Chloride penetration in nonsaturated concrete", J. Mater. Civ. Eng., 15(2), ASCE, 183-191. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(183)
- Breugel, K. Van (1991), Simulation of Hydration and Formation of Structures in Hardening Cement-Based Materials, Ph.D Thesis, Delft University of Technology, The Netherlands.
- Carman, P. (1937), TRANS. Inst. Chem. London, 15, (It is mentioned in the paper of M.A. Knackstedt and X. Zang (1994) Direct Evalution of Length Scales and Structural Parameters Associated with Flow in Porous Media. 50(3), 2134-2138.
- Dalen, S.H. Van (2005), Onderzoek naar de RCM methode, (in Dutch) MSc-Thesis, Delft University of Technology, The Netherlands.
- Davis, H.T. (1997), "The effective medium theory of diffusion in composite media", J. Am. Ceram. Soc., 60, 499-501.
- Dykhuizn, R.C. and Casey, W.H. (1989), "An analysis of solute diffusion in rocks", Geochim, Cosmochim, Acta 53, 2797-2805. https://doi.org/10.1016/0016-7037(89)90157-9
- Garboczi, E.J. and Bentz, D.P. (1998), "Multiscale Analytical/numerical theory of the diffusivity of concrete", Adv. Cement Based Mater., 8, 77-88. https://doi.org/10.1016/S1065-7355(98)00010-8
- Landauer, R. (1952), "The Electrical Resistance of Binary Metallic Mixtures," J. Appl. Phy., 23, 779-784. https://doi.org/10.1063/1.1702301
- Luciano, J. and Miltenberger, M. (1999), "Prediction chloride diffusion coefficient from concrete mixture properties", ACI Mater. J., 96(6), 698-703.
- Maekawa, K. Chaube, R. and Kishi, T. (1999), Modeling of Concrete Performance: Hydration, Microstructure Formation and Mass Transport, E & FN Spon.
- Mota, M., Texeira, J.A. and Yelshin, A. (1998), "Tortuosity in bioseparations and its application to food processes", 2nd European Symposium on Biochemical Engineering Science, Porto, 93-98.
- Nokken, M., Boddy, A., Hooton, R.D. and Thomas, M.D.A. (2006), "Time dependent diffusion in concrete-three laboratory studies", Cement Concrete Res., 36(1), 200-207. https://doi.org/10.1016/j.cemconres.2004.03.030
- Ngala, V.T. and Page, C.L. (1997), "Effect of carbonation on pore structure and diffusional properties of hydrated cement paste", Cement Concrete Res., 27(7), 995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
- NT Build 492, Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiment, Finland.
- Papadakis, V.G., Vayenas C.G. and Fardis M.N. (1991), "Physical and chemical characteristics affecting the durability of concrete", ACI Mater. J., 88(2), 186-196.
- Saeki, T., Shinada, K. and Sasaki, K. (2006), "Chloride Ions diffusivity and micro-structure of concrete made with mineral admixtures", International RILEM-JCI Seminar on Concrete Durability and Service Life Planning, Concrete Life'06, Ein-Bokek, Dead Sea, Israel, 129-135.
- Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Mater. J., 90(5), 441-451.
- Tatlier, M. and Erdem-Senataler, A. (2004), "Estimation of the effective diffusion coefficients in open zeolite coatings", Chem. Eng. J., 102, 209-216. https://doi.org/10.1016/j.cej.2004.04.001
- Welty, J.R., Wicks, C.E., Wilson, R.E. and Rorrer, G. (2001), Fundamentals of Momentum, Heat, and Mass Transfer, 4th Edition, John Wiley & Sons.
- Wilke, C.R. and Chang, P. (1995), "Correlation of diffusion coefficient in dilute solutions", J. Am. Inst. Chem. Eng., 1.
- Xi, Y. and Bazant, Z.P. (1999), "Modeling chloride penetration in saturated concrete", J. Mater. Civ. Eng., 11(1), ASCE.
- Yu, B.O. and Li, J.H. (2004), "A geometry model for tortuosity of flow path in porous media", Chinese Phys. Lett., 21(8), 1569-1571. https://doi.org/10.1088/0256-307X/21/8/044
피인용 문헌
- Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects vol.6, pp.5, 2009, https://doi.org/10.12989/cac.2009.6.5.421
- Modeling of ion diffusion coefficient in saturated concrete vol.7, pp.5, 2010, https://doi.org/10.12989/cac.2010.7.5.421
- Geometrical model for tortuosity of transport paths in hardened cement pastes vol.24, pp.3, 2012, https://doi.org/10.1680/adcr.10.00042
- Numerical investigation on tortuosity of transport paths in cement-based materials vol.13, pp.3, 2014, https://doi.org/10.12989/cac.2014.13.3.309
- A reaction-diffusion modeling of carbonation process in self-compacting concrete vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.847
- Modeling of chloride diffusion in concrete containing low-calcium fly ash vol.138, pp.2-3, 2013, https://doi.org/10.1016/j.matchemphys.2012.12.085
- Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence vol.8, pp.2, 2011, https://doi.org/10.12989/cac.2011.8.2.125
- Modeling of chloride diffusion in a hydrating concrete incorporating silica fume vol.10, pp.5, 2012, https://doi.org/10.12989/cac.2012.10.5.523
- Prediction of compressive strength of slag concrete using a blended cement hydration model vol.14, pp.3, 2014, https://doi.org/10.12989/cac.2014.14.3.247
- Combined effect of carbonation and chloride ingress in concrete vol.110, 2016, https://doi.org/10.1016/j.conbuildmat.2016.02.034
- Research on chloride ion diffusivity of concrete subjected to CO2environment vol.10, pp.3, 2012, https://doi.org/10.12989/cac.2012.10.3.219
- Prediction of chloride diffusion coefficient of concrete under flexural cyclic load vol.8, pp.3, 2011, https://doi.org/10.12989/cac.2011.8.3.343
- Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections vol.20, pp.5, 2016, https://doi.org/10.11112/jksmi.2016.20.5.066
- A 2D mechano-chemical model for the simulation of reinforcement corrosion and concrete damage vol.137, 2017, https://doi.org/10.1016/j.conbuildmat.2017.01.103
- Probabilistic analysis of reinforcement corrosion due to the combined action of carbonation and chloride ingress in concrete vol.124, 2016, https://doi.org/10.1016/j.conbuildmat.2016.07.120
- Understanding the interacted mechanism between carbonation and chloride aerosol attack in ordinary Portland cement concrete vol.95, 2017, https://doi.org/10.1016/j.cemconres.2017.02.032
- Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments vol.10, pp.1, 2012, https://doi.org/10.12989/cac.2012.10.1.079
- Comprehensive Approach to Calculate Oxygen Diffusivity of Cementitious Materials Considering Carbonation vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0242-y
- Ingress of chloride ions with carbonation: parameter estimation and analytical simplification pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1528894
- Probabilistic Generalization of a Comprehensive Model for the Deterioration Prediction of RC Structure under Extreme Corrosion Environments vol.10, pp.9, 2018, https://doi.org/10.3390/su10093051
- Influence of chloride threshold value in service life prediction of reinforced concrete structures vol.43, pp.7, 2018, https://doi.org/10.1007/s12046-018-0863-5
- Numerical investigation on gypsum and ettringite formation in cement pastes subjected to sulfate attack vol.19, pp.1, 2009, https://doi.org/10.12989/cac.2017.19.1.019
- An adaptive approach for the chloride diffusivity of cement-based materials vol.23, pp.2, 2009, https://doi.org/10.12989/cac.2019.23.2.145
- A simplified probabilistic model for the combined action of carbonation and chloride ingress vol.71, pp.7, 2019, https://doi.org/10.1680/jmacr.18.00140
- Time Evolution of CO2 Diffusivity of Carbonated Concrete vol.10, pp.24, 2009, https://doi.org/10.3390/app10248910