DOI QR코드

DOI QR Code

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S. (Department of Building and Construction, City University of Hong Kong) ;
  • Zhi, Lunhai (Department of Building and Construction, City University of Hong Kong) ;
  • Hu, Fei (Institute of Atmospheric Physics, Chinese Academy of Sciences)
  • Received : 2008.12.08
  • Accepted : 2009.08.24
  • Published : 2009.11.25

Abstract

This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

Keywords

Acknowledgement

Supported by : Committee of City University of Hong Kong

References

  1. AIJ-RLB-1996 (1996), Recommendations for loads on buildings, Architecture Institute of Japan, (English version, 1996).
  2. Al-Jiboori, M.H. and Hu, F. (2005), "Surface roughness around a 325-m meteorological tower and its effect on urban turbulence", Adv. Atmos. Sci., 22(4), 595-605. https://doi.org/10.1007/BF02918491
  3. ASCE 7-02 (2002), American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures, ASCE, New York.
  4. Baklanov, A.A. and Joffre, S.M. (2008), "The effect of stratification on the aerodynamic roughness length and displacement height", Bound.-Lay. Meteorol., 129, 179-190. https://doi.org/10.1007/s10546-008-9307-9
  5. Carl, M.D., Tarbell, T.C. and Panofsky, H.A. (1973), "Profiles of wind and temperature from towers over homogeneous terrain", J. Atmos. Sci., 30, 788-794. https://doi.org/10.1175/1520-0469(1973)030<0788:POWATF>2.0.CO;2
  6. Cheng, C.H., Wu, J.C., Wang, J. and Lin, Y.Y. (2007), "Wind characteristics of typhoon and monsoon", Proc. of The Twelfth Int. Conf. on Wind Engineering, July 1st-6th, Cairns, Australia, 711-717.
  7. Cook, N.J. (1997), "The Deaves and Harris ABL model applied to heterogeneous terrain", J. Wind Eng. Ind. Aerod., 66, 197-214. https://doi.org/10.1016/S0167-6105(97)00034-2
  8. Davenport, A.G. (1960), "Rationale for determining design wind velocities", J. Struct. Eng. ASCE, 86, 39-68.
  9. Davenport, A.G. (1961), "The spectrum of horizontal gustiness near the ground in high winds", Q. J. Roy. Meteor. Soc., 87, 194-211. https://doi.org/10.1002/qj.49708737208
  10. Deaves, D.M. (1981a), "Computations of wind flow over changes in surface roughness", J. Wind Eng. Ind. Aerod., 7, 65-94. https://doi.org/10.1016/0167-6105(81)90068-4
  11. Deaves, D.M. (1981b), "Terrain dependence of longitudinal R. M. S. velocities in the neutral atmosphere", J. Wind Eng. Ind. Aerod., 8, 259-274. https://doi.org/10.1016/0167-6105(81)90025-8
  12. Eliasson, I., Offerle, B., Grimmond, C.S.B. and Lindqvist, S. (2006), "Wind fields and turbulence statistics in an urban street canyon", Atmos. Environ., 40, 1-16.
  13. GB50009-2001 (2002), Load code for the design of building structures, China Architecture & Building Press, Beijing.
  14. Grag, R.K., Lou, J.X. and Kasperski, M. (1997), "Some features of modeling spectral characteristics of flow in boundary layer wind tunnels", J. Wind Eng. Ind. Aerod., 72, 1-12. https://doi.org/10.1016/S0167-6105(97)00233-X
  15. Grant, A.L.M. (1994), "Wind profiles in the stable boundary layer, and the effect of low relief", Q. J. Roy. Meteor. Soc., 120, 27-46. https://doi.org/10.1002/qj.49712051504
  16. Grimmond, C.S.B., King, T.S., Roth, M. and Oke, T.R. (1998), "Aerodynamic roughness of urban areas derived from wind observations", Bound.-Lay. Meteorol., 89, 1-24. https://doi.org/10.1023/A:1001525622213
  17. Grimmond, C.S.B. and Oke, T.R. (1999), "Aerodynamic properties of urban areas derived from analysis of surface form", J. Appl. Meteorol., 38, 1262-1292. https://doi.org/10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2
  18. Holmes, J.D., Banks, R.W. and Paevere, P. (1997), "Measurements of topographic multipliers and flow separation from a steep escarpment. Part I. Full scale measurements", J. Wind Eng. Ind. Aerod., 69-71, 885-892. https://doi.org/10.1016/S0167-6105(97)00214-6
  19. Holmes, J.D., Baker, C.J., English, E.C. and Choi, E.C.C. (2005), "Wind structure and codification", Wind Struct., 8(4), 235-250. https://doi.org/10.12989/was.2005.8.4.235
  20. Holmes, J.D. (2007), Wind loading of structures, Taylor & Francis, New York.
  21. Holtslag, A.A.M. (1984), "Estimates of diabatic wind speed profiles from near surface weather observations", Bound.-Lay. Meteorol., 29, 225-250. https://doi.org/10.1007/BF00119790
  22. Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), "Spectral characteristics of surface-layer turbulence", Q. J. Roy. Meteor. Soc., 98, 563-589. https://doi.org/10.1002/qj.49709841707
  23. Karlsson, S. (1986), "The Applicability of Wind Profile Formulas to an Urban-Rural Interface Site", Bound.-Lay. Meteorol., 34, 333-355. https://doi.org/10.1007/BF00120987
  24. Korrell, A., Panofsky, H.A. and Rossi, R.J. (1982), "Wind profiles at the Boulder tower", Bound.-Lay. Meteorol., 22, 295-312. https://doi.org/10.1007/BF00120011
  25. Law, S.S., Bu, J.Q., Zhu, X.Q. and Chan, S.L. (2006), "Wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast", Wind Struct., 9(5), 387-396. https://doi.org/10.12989/was.2006.9.5.387
  26. Li, Q.S. and Melbourne, W.H. (1999), "The effects of large scale turbulence on pressure fluctuations in separated and reattaching flows", J. Wind Eng. Ind. Aerod., 83, 159-169. https://doi.org/10.1016/S0167-6105(99)00069-0
  27. Li, Q.S., Xiao, Y.Q., Wong, C.K. and Jeary, A.P. (2003), "Field measurements of wind effects on the tallest building in Hong Kong", Struct. Des. Tall Spec., 12, 67-82. https://doi.org/10.1002/tal.213
  28. Li, Q.S., Xiao, Y.Q., Wong, C.K. and Jeary, A.P. (2004a), "Field measurements of typhoon effects on a super tall building", Eng. Struct., 26, 233-244. https://doi.org/10.1016/j.engstruct.2003.09.013
  29. Li, Q.S., Wu, J.R., Liang, S.G., Xiao, Y.Q. and Wong, C.K. (2004b), "Full-scale measurements and numerical evaluation of wind-induced vibration of a 63-story reinforced concrete super tall building", Eng. Struct., 26, 1779-1794. https://doi.org/10.1016/j.engstruct.2004.06.014
  30. Li, Q.S., Xiao, Y.Q. and Wong, C.K. (2005), "Full-scale monitoring of typhoon effects on super tall buildings", J. Fluids Struct., 20, 697-717. https://doi.org/10.1016/j.jfluidstructs.2005.04.003
  31. Olesen, H.R., Larsen, S.E. and Hojstrup, J. (1984), "Modeling velocity spectra in the tower part of the planetary boundary layer", Bound.-Lay. Meteorol., 29, 285-312. https://doi.org/10.1007/BF00119794
  32. Panofsky, H.A. and McCormik, R.A. (1959), The spectrum of vertical velocity near the surface, Collection of Mineral industries, Pennsylvenia University, University Park.
  33. Panofsky, H.A. and Petersen, E.L. (1972), "Wind profiles and change of terrain roughness at Riso", Q. J. Roy. Meteor. Soc., 98, 845-854.
  34. Panofsky, H.A., Tennekes, H., Lenschow, D.H. and Wyngaard, J.C. (1977), "The characteristics of turbulent velocity components in the surface layer under convective conditions", Bound.-Lay. Meteorol., 11, 355-361. https://doi.org/10.1007/BF02186086
  35. Panofsky, H.A., Larko, D., Lipschutz, R., Stone, G., Bradley, E.F., Bowen, A.J. and Hojstrup, J. (1982), "Spectra of velocity components over complex terrain", Q. J. Roy. Meteor. Soc., 108, 215-230. https://doi.org/10.1002/qj.49710845513
  36. Roth, M. (2000), "Review of atmospheric turbulence over cities", Q. J. Roy. Meteor. Soc., 126, 941-990. https://doi.org/10.1256/smsqj.56408
  37. Schroeder, J.L., Edwards, B.P. and Giammanco, I.M. (2009), "Observed tropical cyclone wind flow characteristics", Wind Struct., 12(4), 347-379.
  38. Shiau, B.S. and Chen, B.Y. (2002), "Observation on wind turbulence characteristics and velocity spectra near the ground at the coastal region", J. Wind Eng. Ind. Aerod., 90, 1671-1681. https://doi.org/10.1016/S0167-6105(02)00278-7
  39. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures-fundamentals and applications to design, John wiley & Sons, Inc., 42-43.
  40. Solari, G. and Piccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Probabilist. Eng. Mech., 16, 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2
  41. Takagi, K., Miyata, A., Harazono, Y., Ota, N., Komine, M. and Yoshimoto, M. (2003), "An alternative approach to determining zero-plane displacement, and its application to a lotus paddy field", Agr. Forest Meteorol., 115, 173-181. https://doi.org/10.1016/S0168-1923(02)00209-5
  42. Tamura, Y., Suda, K., Sasaki, A., Iwatani, Y., Fujii, K., Ishibashi, R. and Hibi, K., (2001), "Simultaneous measurements of wind speed profiles at two sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 89, 325-335. https://doi.org/10.1016/S0167-6105(00)00085-4
  43. Tamura, Y., Iwatani, Y., Hibi, K., Suda, K., Nakamura, O., Maruyama, T. and Ishibashi, R., (2007), "Profiles of mean wind speeds and vertical turbulence intensities measured at seashore and two inland sites using Doppler sodars", J. Wind Eng. Ind. Aerod., 95, 411-427. https://doi.org/10.1016/j.jweia.2006.08.005
  44. Thomas, R. and Vogt, S. (1993), "Variances of the vertical and horizontal wind measured by tower instruments and sodar", Appl. Phys. B-Lasers O., 57, 19-26. https://doi.org/10.1007/BF00324096
  45. Thuillier, R.H. and Lappe, V.O. (1964), "Wind and temperature profile characteristics from observations on a 1400 ft tower", J. Appl. Meteorol., 3, 299-306. https://doi.org/10.1175/1520-0450(1964)003<0299:WATPCF>2.0.CO;2
  46. Tieleman, H.W. (2008), "Strong wind observations in the atmospheric surface layer", J. Wind Eng. Ind. Aerod., 96, 41-77. https://doi.org/10.1016/j.jweia.2007.03.003
  47. Vogt, S. and Thomas, P. (1995), "Soadar-a useful remote sounder to measure wind and turbulence", J. Wind Eng. Ind. Aerod., 54-55, 163-172. https://doi.org/10.1016/0167-6105(94)00039-G
  48. von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc. of the National Academy of Sciences, 34, 530-539. https://doi.org/10.1073/pnas.34.11.530
  49. Wieinga, J. (1993), "Representative roughness parameters for homogeneous terrain", Meteorology, 63, 323-363.
  50. William, P.K. and Wilfried, B. (1986), "Wind profile constants in a neutral atmospheric boundary layer over layer over complex terrain", Bound.-Lay Meteorol., 34, 35-54. https://doi.org/10.1007/BF00120907
  51. Zilitinkevich, S.S., Mammarella, I., Baklanov, A.A. and Joffre, S.M. (2008), "The effect of stratification on the aerodynamic roughness length and displacement height", Bound.-Lay. Meteorol., 129, 179-190. https://doi.org/10.1007/s10546-008-9307-9

Cited by

  1. An alternative wind profile formulation for urban areas in neutral conditions vol.15, pp.1, 2015, https://doi.org/10.1007/s10652-014-9364-1
  2. Stationary and nonstationary analysis on the wind characteristics of a tropical storm vol.17, pp.6, 2016, https://doi.org/10.12989/sss.2016.17.6.1067
  3. Numerical calculation of the wind action on buildings using Eurocode 1 atmospheric boundary layer velocity profiles vol.13, pp.6, 2010, https://doi.org/10.12989/was.2010.13.6.487
  4. Characterization of open and suburban boundary layer wind turbulence in 2008 Hurricane Ike vol.17, pp.2, 2013, https://doi.org/10.12989/was.2013.17.2.135
  5. Vibrations of an aramid anchor cable subjected to turbulent wind vol.72, 2014, https://doi.org/10.1016/j.advengsoft.2013.08.004
  6. Study on wind characteristics of a strong typhoon in near-ground boundary layer vol.26, pp.5, 2017, https://doi.org/10.1002/tal.1338
  7. A review of wind loads on heliostats and trough collectors vol.32, 2014, https://doi.org/10.1016/j.rser.2014.01.032
  8. Characterisation of the wind properties in the Grande Ravine viaduct vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.012
  9. Monitoring of typhoon effects on a super-tall building in Hong Kong vol.21, pp.6, 2014, https://doi.org/10.1002/stc.1622
  10. Evaluation of wind loads and wind induced responses of a super-tall building by large eddy simulation vol.23, pp.4, 2016, https://doi.org/10.12989/was.2016.23.4.313
  11. Boundary layer wind structure from observations on a 325m tower vol.98, pp.12, 2010, https://doi.org/10.1016/j.jweia.2010.08.001
  12. Wind profiles of tropical cyclones as observed by Doppler wind profiler and anemometer vol.17, pp.4, 2013, https://doi.org/10.12989/was.2013.17.4.419
  13. Wind characteristics of a strong typhoon in marine surface boundary layer vol.15, pp.1, 2012, https://doi.org/10.12989/was.2012.15.1.001
  14. Wind characteristics near ground in south-eastern coast area of China based on field measurement vol.7, pp.sup1, 2016, https://doi.org/10.1080/19475705.2016.1181459
  15. Measurement of Non-Stationary Characteristics of a Landfall Typhoon at the Jiangyin Bridge Site vol.17, pp.10, 2017, https://doi.org/10.3390/s17102186
  16. Wind characteristics at Sutong Bridge site using 8-year field measurement data vol.25, pp.2, 2009, https://doi.org/10.12989/was.2017.25.2.195
  17. Quantitative Assessment of Nonstationarity of Wind Speed Signal Using Recurrence Plot vol.32, pp.6, 2009, https://doi.org/10.1061/(asce)as.1943-5525.0001092
  18. Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon vol.30, pp.6, 2009, https://doi.org/10.12989/was.2020.30.6.575
  19. Numerical Analysis on Buffeting Performance of a Long-Span Four-Tower Suspension Bridge Using the FEM Model vol.25, pp.3, 2009, https://doi.org/10.1007/s12205-021-2406-6
  20. A Refined Study of Atmospheric Wind Properties in the Beijing Urban Area Based on a 325 m Meteorological Tower vol.12, pp.6, 2009, https://doi.org/10.3390/atmos12060786
  21. Full-scale monitoring of wind effects on a supertall structure during six tropical cyclones vol.45, pp.None, 2009, https://doi.org/10.1016/j.jobe.2021.103507