References
- Flamand, O., de la Foye, A. and Danbo, F. (2001), "Aerodynamic Derivatives of Three Bridge Decks measured by the Forced Oscillation Technique", Proc. of the 3rd European and African Conf. on Wind Engineering, Eindhoven, Netherlands, 606-610.
- Frauenhofer Institute (2008), Mesh-based parallel code coupling interface: MpCCI, Further information available online at http://www.mpcci.de.
- Hortmanns, M. (1997), "Zur Identifikation und Berucksichtigung nichtlinearer aeroelastischer Effekte", Dissertation, RTWH Aachen, Lehrstuhl fur Stahlbau.
- Karpel, M. and Strul, E. (1996), "Minimum state unsteady aerodynamic approximations with flexible constraints", J. Aircraft, 33, 1190-1196. https://doi.org/10.2514/3.47074
- Larsen, A. and Jacobsen, A.S. (1992), Aerodynamic Design of the Great Belt East Bridge, Aerodynamics of Large Bridges, A.A. Balkema.
- Larsen, A. and Walther, J. (1998), "Discrete Vortex Simulation of Flow around Five Generic Bridge Deck Sections", J. Wind Eng. Ind. Aerod., 77-78, 657-672.
- Larsen, A. and Astiz, M. (1998), Aerodynamic Considerations for the Gibraltar Feasibility Study, Bridge Aerodynamics, A.A. Balkema.
- Morgenthal, G. (2002), "Aerodynamic Analysis of Structures using High-Resolution Vortex Particle Methods", PhD Thesis, Dep. of Eng., University of Cambridge.
- Reinhold, T.A., Brinch, M. and Damsgaard, A. (1992), Wind tunnel tests for the Great Belt Link, Aerodynamics of Large Bridges, 1135-1150.
- Scanlan, R. and Tomko, J. (1971), "Airfoil and Bridge Deck Flutter Derivatives", J. Eng. Mech. Div., 97-EM6, 1717-1737.
- Scanlan, R.H., Beliveau, J.G. and Budlong, K.S. (1974), "Impulse aerodynamic functions for bridge decks", J. Eng. Mech. Div. ASCE, 100-EM4, 657-672.
- Simiu, S. and Scanlan, R.H. (1996), Wind Effects on Structures, 3rd ed., John Wiley and Sons, New York.
- Starossek, U. (1992), Bruckendynamik - Winderregte Schwingungen von Seilbrucken, Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden (in German). Available online at http://www.starossek.de.
- Starossek, U. (1993), "Prediction of bridge flutter through use of finite elements", Struct. Eng. Rev., 5(4), 301-307. Available online at http://www.starossek.de.
- Starossek, U. (1998), "Complex notation in flutter analysis", J. Struct. Eng. ASCE, 124(8), 975-977 (Discussion and Closure in 125(10), 1199-1200). https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(975)
- Starossek, U. (2009), Flutter derivatives for various sections obtained from experiments and numerical simulations, Hamburg University of Technology, data files. Available online at http://www.starossek.de.
- Theodorsen, T. (1935). "General theory of aerodynamic instability and the mechanism of flutter", National Advisory Committee for Aeronautics, Technical Report No. 496, 413-433.
- Thiesemann, L. and Starossek, U. (2002), "Numerical evaluation of flutter derivatives", Proc. of 4th Int. on Structural Dynamics-EURODYN2002, Munich, Germany, Sept. 2-5, 2002, Balkema, Lisse, 1561-1566.
- Thiesemann, L. (2007), "Zur Ermittlung von Flatterderivativa aus Versuchen und mittels numerischer Stromungsmechanik", Dr.-Ing. Thesis, Hamburg University of Technology (in German). Available online at http://www.sh.tu-harburg.de/index.html.
- Walther, J.H. (1994), "Discrete Vortex Method for Two-dimensional Flow past Bodies of Arbitary Shape Undergoing Prescribed Rotary and Translational Motion", PhD Thesis, Department of Fluid Mechanics, Technical University of Denmark.
- Wienand, B. (1994), Experimentelle und rechnerische Untersuchung der aerodynamischen Stabilitat weitgespannter Brucken unter Berucksichtigung nichtlinearer Windkr fte, Fachbereich Bauingenieurwesen der Universitat Kassel.
Cited by
- LMI-based gain scheduling for bridge flutter control using eccentric rotational actuators vol.33, pp.4, 2012, https://doi.org/10.1002/oca.1010
- Bridge deck flutter derivatives: Efficient numerical evaluation exploiting their interdependence vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.11.006
- Flutter characteristics of twin-box girder bridges with vertical central stabilizers vol.133, 2017, https://doi.org/10.1016/j.engstruct.2016.12.009
- Transfer function approximation of motion-induced aerodynamic forces with rational functions vol.14, pp.2, 2011, https://doi.org/10.12989/was.2011.14.2.133
- Numerical simulation of feedback flutter control for a single-box-girder suspension bridge by twin-winglet system vol.169, 2017, https://doi.org/10.1016/j.jweia.2017.07.013
- Identification of flutter derivatives of bridge decks using CFD-based discrete-time aerodynamic models vol.18, pp.3, 2014, https://doi.org/10.12989/was.2014.18.3.215
- Aeroelastic control of long-span suspension bridges with controllable winglets vol.23, pp.12, 2016, https://doi.org/10.1002/stc.1839
- Methods for flutter stability analysis of long-span bridges: a review vol.170, pp.4, 2017, https://doi.org/10.1680/jbren.15.00039
- On the identification of flutter derivatives of bridge decks via RANS turbulence models: Benchmarking on rectangular prisms vol.76, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2014.07.027
- Examination of experimental errors in Scanlan derivatives of a closed-box bridge deck vol.26, pp.4, 2009, https://doi.org/10.12989/was.2018.26.4.231
- Artificial Neural Network model to predict the flutter velocity of suspension bridges vol.233, pp.None, 2020, https://doi.org/10.1016/j.compstruc.2020.106236