References
- Carassale, L., Piccardo, G. and Solari, G. (1999), "Double modal transformation in continuous modeling", Proc.of the 10th Int. Conf. on Wind Engineering, Copenaghen.
- Carassale, L., Piccardo, G. and Solari, G. (2001), "Double Modal Transformation and Wind Engineering Applications", J. Eng. Mech. ASCE, 127(5), 432-439. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(432)
- Carassale, L. and Solari, G. (2002), "Wind modes for structural dynamics: a continuous approach", Probabilistic Eng. Mech., 17, 157-166. https://doi.org/10.1016/S0266-8920(01)00036-4
- Carassale, L. (2005), "POD-based filters for the representation of random loads on structures", Probabilistic Eng. Mech., 20, 263-280. https://doi.org/10.1016/j.probengmech.2005.05.008
- Carassale, L., Solari, G. and Tubino, F. (2007), "Proper Orthogonal Decomposition in wind engineering. Part 2: Theoretical aspects and some applications", Wind Struct., 10(2), 177-208. https://doi.org/10.12989/was.2007.10.2.177
- Davenport, A.G. (1964), "Note on the distribution of the largest value of a random function with application to gust loading", Proc. Inst. Civ. Eng., London, 24, 187-196.
- Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div. ASCE, 93, 11-34.
- Di Paola, M. and Gullo, I. (2001), "Digital generation of multivariate wind field processes", Probabilistic Eng. Mech., 16, 1-10. https://doi.org/10.1016/S0266-8920(99)00032-6
- Katsumura, A., Tamura, Y. and Nakamura, O. (2005), "Universal wind load distribution simultaneously reproducing maximum load effects in all subject members on large-span cantilevered roof", Proc. of the Fourth European & African Conf. on Wind Engineering, Prague, July.
- Larose, G.L. and Livesey, F.M. (1997), "Performance of streamlined bridge decks in relation to the aerodynamics of a flat plate", J. Wind Eng. Ind. Aerod., 69-71, 851-860. https://doi.org/10.1016/S0167-6105(97)00211-0
- Monaco, P. and Fiore, A. (2005), "A method to evaluate the frequencies of free transversal vibrations in selfanchored cable-stayed bridges", Comput. Concrete, 2(2), 125-146. https://doi.org/10.12989/cac.2005.2.2.125
- Piccardo, G. and Solari, G. (2002), "3-D gust effect factor for slender vertical structures", Probabilistic Eng. Mech., 17, 143-155. https://doi.org/10.1016/S0266-8920(01)00034-0
- Priestley, M.B. (1981), Spectral analysis and time series, London, Academic Press, 1981.
- Repetto, M.P. and Solari, G. (2004), "Equivalent static wind actions on vertical structures", J. Wind Eng. Ind. Aerod., 92, 335-357. https://doi.org/10.1016/j.jweia.2004.01.002
- Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures, John Wiley and Sons, USA.
- Solari, G. (1982), "Alongwind response estimation: closed form solution", J. Struct. Div. ASCE, 108(1), 225-244.
- Solari, G. and Carassale, L. (2000), "Modal transformation tools in structural dynamics and wind engineering", Wind Struct., 3(4), 221-241. https://doi.org/10.12989/was.2000.3.4.221
- Solari, G. and Piccardo, G. (2001), "Probabilistic 3-D turbulence modeling for gust buffeting of structures", Probabilistic Eng. Mech., 16, 73-86. https://doi.org/10.1016/S0266-8920(00)00010-2
- Solari, G. and Tubino, F. (2005), "Gust buffeting of long-span bridges by Double Modal Transformation", Proc. of the Fourth European & African Conf. on Wind Engineering, Prague, July.
- Tubino, F. and Solari, G. (2007), "Gust buffeting of long span bridges: Double Modal Transformation and effective turbulence", Eng. Struct., 29(8), 1698-1707. https://doi.org/10.1016/j.engstruct.2006.09.019
- UNI EN 1991-1-4 (2005), Actions on structures - Parte 1-4: General actions - Wind actions, Eurocode 1.
Cited by
- An approximate solution for the rheological behavior of non-homogeneous structures changing the structural system during the construction process vol.46, 2013, https://doi.org/10.1016/j.engstruct.2012.08.014
- Principal static wind loads vol.113, 2013, https://doi.org/10.1016/j.jweia.2012.12.009
- An efficient approach to the evaluation of wind effects on structures based on recorded pressure fields vol.124, 2016, https://doi.org/10.1016/j.engstruct.2016.06.023
- Evolutionary Modeling to Evaluate the Shear Behavior of Circular Reinforced Concrete Columns vol.2014, 2014, https://doi.org/10.1155/2014/684256
- Serviceability Performance Analysis of Concrete Box Girder Bridges Under Traffic-Induced Vibrations by Structural Health Monitoring: A Case Study 2017, https://doi.org/10.1007/s40999-017-0161-3
- On the Fresh/Hardened Properties of Cement Composites Incorporating Rubber Particles from Recycled Tires vol.2014, 2014, https://doi.org/10.1155/2014/876158
- Viscoelastic behaviour of non-homogeneous variable-section beams with post-poned restraints vol.9, pp.5, 2012, https://doi.org/10.12989/cac.2012.9.5.357
- Mathematical explanation on the POD applications for wind pressure fields with or without mean value components vol.23, pp.4, 2016, https://doi.org/10.12989/was.2016.23.4.367
- A simplified structural mechanics model for cable-truss footbridges and its implications for preliminary design vol.68, 2014, https://doi.org/10.1016/j.engstruct.2014.02.015
- Correlation and combination of wind force components and responses vol.125, 2014, https://doi.org/10.1016/j.jweia.2013.11.015
- Reconstruction of the envelope of non-Gaussian structural responses with principal static wind loads vol.149, 2016, https://doi.org/10.1016/j.jweia.2015.12.001
- Parametric Identification of Nonlinear Devices for Seismic Protection Using Soft Computing Techniques vol.639-640, pp.1662-8985, 2013, https://doi.org/10.4028/www.scientific.net/AMR.639-640.118
- POD Analysis for modeling wind pressures and wind effects of a cylindrical shell roof vol.30, pp.6, 2009, https://doi.org/10.12989/was.2020.30.6.559
- Fast simulation of large-scale non-stationary wind velocities based on adaptive interpolation reconstruction scheme vol.33, pp.1, 2009, https://doi.org/10.12989/was.2021.33.1.055