DOI QR코드

DOI QR Code

Finite element analysis of 2D turbulent flows using the logarithmic form of the κ-ε model

  • Received : 2007.05.17
  • Accepted : 2008.11.22
  • Published : 2009.01.25

Abstract

The logarithmic form for turbulent flow analysis guarantees the positivity of the turbulence variables as ${\kappa}$ and ${\varepsilon}$ of the ${\kappa}-{\varepsilon}$ model by using the natural logarithm of these variables. In the present study, the logarithmic form is incorporated into the finite element solution procedure for the unsteady turbulent flow analysis. A backward facing step flow using the standard ${\kappa}-{\varepsilon}$ model and a flow around a 2D square cylinder using the modified ${\kappa}-{\varepsilon}$ model (the Kato-Launder model) are simulated. These results show that the logarithmic form effectively keeps adequate balance of turbulence variables and makes the analysis stable during transient or unsteady processes.

Keywords

References

  1. Abe, K., Jang, Y.J. and Leschziner, M. A. (2003), "An investigation of wall-anisotropy expressions and lengthscale equations for non-linear eddy-viscosity models", Int. J. Heat Fluid Fl., 24, 181-198. https://doi.org/10.1016/S0142-727X(02)00237-0
  2. Abe, K., Nagano, Y. and Kondoh, T. (1992), "An improved k-$\epsilon$ model for prediction of turbulent flows with separation and reattachment", JSME J., Part B, 58-554, 3003-3010 (in Japanese).
  3. Bauer, W., Haag, O. and Hennecke, D. K. (2000), "Accuracy and robustness of nonlinear eddy viscosity models", Int. J. Heat Fluid Fl., 21, 312-319. https://doi.org/10.1016/S0142-727X(00)00015-1
  4. Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind / Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. M., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  5. Craft, T. J., Launder, B. E. and Suga, K. (1996), "Development and application of a cubic eddy-viscosity model of turbulence", Int. J. Heat Fluid Fl., 17, 108-115. https://doi.org/10.1016/0142-727X(95)00079-6
  6. Ferziger, J.H. , Kline, S.J. , Avva, R.K., Bordalo, S.N. and Tzuoo, K.L. (1990), "Zonal Modeling of Turbulent Flows - Philosophy and Accomplishments", Near-Wall Turbulence, 800-817.
  7. Ilinca, F. , Hetu, J.F. and Pelletier, D. (1998), "A unified finite element algorithm for two equation models of turbulence", Comput. Fluids, 27(3), 291-300. https://doi.org/10.1016/S0045-7930(97)00039-X
  8. Ilinca, F. and Pelletier, D. (1998), "Positivity Preservation and Adaptive Solution for the k-$\epsilon$ Model of Turbulence", AIAA J., 36(1), 44-50. https://doi.org/10.2514/2.350
  9. Ignat, L. , Pelletier, D. and Ilinca, F. (2000), "A universal formulation of two-equation models for adaptive computation of turbulent flows", Comput. Methods Appl. M., 189, 1119-1139. https://doi.org/10.1016/S0045-7825(99)00370-9
  10. Jones, W. P. and Launder, B. E. (1972), "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Tran., 15, 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
  11. Kasagi, N. and Matsunaga, A. (1994), "Three-dimensional particle-tracking velocimetry measurement of turbulence statics and energy budget in a backward-facing step flow", Int. J. Heat Fluid Fl., 16, 477-485.
  12. Kato, M. (1997), "2-D turbulent flow analysis with modified k-$\epsilon$ around a stationary square cylinder and vibrating one in the along and across wind", J. Struct. Mech. Earthquake Eng., JSCE, 577(I-41), 217-230 (in Japanese).
  13. Lacasse, D., Turgeon, E. and Pelletier, D. (2001), "Prediction of turbulent separated flow in a turnaround duct using wall functions and adaptivity", Int. J. Comput. Fluid D., 15, 209-225. https://doi.org/10.1080/10618560108970030
  14. Lacasse, D., Turgeon, E. and Pelletier, D. (2004), "On the judicious use of the k-$\varepsilon$ model, wall functions and adaptivity", Int. J. Therm. Sci., 43, 925-938. https://doi.org/10.1016/j.ijthermalsci.2004.03.004
  15. Lardeau, S. and Leschziner, M. A. (2005), "Unsteady RANS modeling of wake-blade interaction: computational requirements and limitations", Comput. Fluids, 34, 3-21. https://doi.org/10.1016/j.compfluid.2004.04.001
  16. Launder, B. E. and Spalding, D. B. (1974), "The numerical computation of turbulent flows", Comput. Methods Appl. M., 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
  17. Le, H., Moin, P. and Kim, J. (1997), "Direct numerical simulation of turbulent flow over a backward-facing step", J. Fluid Mech., 330, 349-374. https://doi.org/10.1017/S0022112096003941
  18. Luo, H., Baum, J. D. and Lohner, R. (2003), "Computation of compressible flows using a two-equation turbulence model on unstructured grids", Int. J. Comput. Fluid D., 17, 87-93. https://doi.org/10.1080/1061856021000034337
  19. Maurizi, A., Palma, J. M. L. M. and Castro, F. A. (1998), "Numerical simulation of the atmospheric flow in a mountainous region of the North Portugal", J. Wind Eng. Ind. Aerod., 74-76, 219-228. https://doi.org/10.1016/S0167-6105(98)00019-1
  20. Mohammadi, B. and Pironneau, O. (1994), "Analysis of the K-Epsilon turbulence model", Masson.
  21. Mohammadi, B. and Puigt, G. (2006), "Wall functions in computational fluid mechanics", Comput. Fluids, 35, 1108-1115. https://doi.org/10.1016/j.compfluid.2005.02.009
  22. Rodi, W. (1991), "Experience with two-layer models combining the k-$\epsilon$ model with a one-equation model near the wall", AIAA paper 91-0216.
  23. Shimada, K. and Ishihara, T. (2002), "Application of a modified k-$\epsilon$ model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders", J. Fluids Struct., 16(4), 465-485. https://doi.org/10.1006/jfls.2001.0433
  24. Turgeon, E., Pelletier, D. and Ignat, L. (2000), "Effects of adaptivity on finite element schemes for turbulent heat transfer and flow predictions", Numer. Heat Tr. A-Appl., 38, 847-868. https://doi.org/10.1080/104077800457458
  25. Yamaguchi, A., Ishihara, T. and Fujino, Y. (2003), "Experimental study of the wind flow in a coastal region of Japan", J. Wind Eng. Ind. Aerod., 91, 247-264. https://doi.org/10.1016/S0167-6105(02)00349-5
  26. Yoshie, R., Mochida, A. Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T. and Shirasawa, T. (2007), "Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan", J. Wind Eng. Ind. Aerod., 95, 1551-1578. https://doi.org/10.1016/j.jweia.2007.02.023

Cited by

  1. Stabilized finite element technique and its application for turbulent flow with high Reynolds number vol.14, pp.5, 2011, https://doi.org/10.12989/was.2011.14.5.465
  2. CFD practical application in conceptual design of a 425 m cable-stayed bridge vol.13, pp.4, 2010, https://doi.org/10.12989/was.2010.13.4.309