References
- Abe, K., Jang, Y.J. and Leschziner, M. A. (2003), "An investigation of wall-anisotropy expressions and lengthscale equations for non-linear eddy-viscosity models", Int. J. Heat Fluid Fl., 24, 181-198. https://doi.org/10.1016/S0142-727X(02)00237-0
-
Abe, K., Nagano, Y. and Kondoh, T. (1992), "An improved k-
$\epsilon$ model for prediction of turbulent flows with separation and reattachment", JSME J., Part B, 58-554, 3003-3010 (in Japanese). - Bauer, W., Haag, O. and Hennecke, D. K. (2000), "Accuracy and robustness of nonlinear eddy viscosity models", Int. J. Heat Fluid Fl., 21, 312-319. https://doi.org/10.1016/S0142-727X(00)00015-1
- Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind / Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Methods Appl. M., 32, 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
- Craft, T. J., Launder, B. E. and Suga, K. (1996), "Development and application of a cubic eddy-viscosity model of turbulence", Int. J. Heat Fluid Fl., 17, 108-115. https://doi.org/10.1016/0142-727X(95)00079-6
- Ferziger, J.H. , Kline, S.J. , Avva, R.K., Bordalo, S.N. and Tzuoo, K.L. (1990), "Zonal Modeling of Turbulent Flows - Philosophy and Accomplishments", Near-Wall Turbulence, 800-817.
- Ilinca, F. , Hetu, J.F. and Pelletier, D. (1998), "A unified finite element algorithm for two equation models of turbulence", Comput. Fluids, 27(3), 291-300. https://doi.org/10.1016/S0045-7930(97)00039-X
-
Ilinca, F. and Pelletier, D. (1998), "Positivity Preservation and Adaptive Solution for the k-
$\epsilon$ Model of Turbulence", AIAA J., 36(1), 44-50. https://doi.org/10.2514/2.350 - Ignat, L. , Pelletier, D. and Ilinca, F. (2000), "A universal formulation of two-equation models for adaptive computation of turbulent flows", Comput. Methods Appl. M., 189, 1119-1139. https://doi.org/10.1016/S0045-7825(99)00370-9
- Jones, W. P. and Launder, B. E. (1972), "The prediction of laminarization with a two-equation model of turbulence", Int. J. Heat Mass Tran., 15, 301-314. https://doi.org/10.1016/0017-9310(72)90076-2
- Kasagi, N. and Matsunaga, A. (1994), "Three-dimensional particle-tracking velocimetry measurement of turbulence statics and energy budget in a backward-facing step flow", Int. J. Heat Fluid Fl., 16, 477-485.
-
Kato, M. (1997), "2-D turbulent flow analysis with modified k-
$\epsilon$ around a stationary square cylinder and vibrating one in the along and across wind", J. Struct. Mech. Earthquake Eng., JSCE, 577(I-41), 217-230 (in Japanese). - Lacasse, D., Turgeon, E. and Pelletier, D. (2001), "Prediction of turbulent separated flow in a turnaround duct using wall functions and adaptivity", Int. J. Comput. Fluid D., 15, 209-225. https://doi.org/10.1080/10618560108970030
-
Lacasse, D., Turgeon, E. and Pelletier, D. (2004), "On the judicious use of the k-
$\varepsilon$ model, wall functions and adaptivity", Int. J. Therm. Sci., 43, 925-938. https://doi.org/10.1016/j.ijthermalsci.2004.03.004 - Lardeau, S. and Leschziner, M. A. (2005), "Unsteady RANS modeling of wake-blade interaction: computational requirements and limitations", Comput. Fluids, 34, 3-21. https://doi.org/10.1016/j.compfluid.2004.04.001
- Launder, B. E. and Spalding, D. B. (1974), "The numerical computation of turbulent flows", Comput. Methods Appl. M., 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2
- Le, H., Moin, P. and Kim, J. (1997), "Direct numerical simulation of turbulent flow over a backward-facing step", J. Fluid Mech., 330, 349-374. https://doi.org/10.1017/S0022112096003941
- Luo, H., Baum, J. D. and Lohner, R. (2003), "Computation of compressible flows using a two-equation turbulence model on unstructured grids", Int. J. Comput. Fluid D., 17, 87-93. https://doi.org/10.1080/1061856021000034337
- Maurizi, A., Palma, J. M. L. M. and Castro, F. A. (1998), "Numerical simulation of the atmospheric flow in a mountainous region of the North Portugal", J. Wind Eng. Ind. Aerod., 74-76, 219-228. https://doi.org/10.1016/S0167-6105(98)00019-1
- Mohammadi, B. and Pironneau, O. (1994), "Analysis of the K-Epsilon turbulence model", Masson.
- Mohammadi, B. and Puigt, G. (2006), "Wall functions in computational fluid mechanics", Comput. Fluids, 35, 1108-1115. https://doi.org/10.1016/j.compfluid.2005.02.009
-
Rodi, W. (1991), "Experience with two-layer models combining the k-
$\epsilon$ model with a one-equation model near the wall", AIAA paper 91-0216. -
Shimada, K. and Ishihara, T. (2002), "Application of a modified k-
$\epsilon$ model to the prediction of aerodynamic characteristics of rectangular cross-section cylinders", J. Fluids Struct., 16(4), 465-485. https://doi.org/10.1006/jfls.2001.0433 - Turgeon, E., Pelletier, D. and Ignat, L. (2000), "Effects of adaptivity on finite element schemes for turbulent heat transfer and flow predictions", Numer. Heat Tr. A-Appl., 38, 847-868. https://doi.org/10.1080/104077800457458
- Yamaguchi, A., Ishihara, T. and Fujino, Y. (2003), "Experimental study of the wind flow in a coastal region of Japan", J. Wind Eng. Ind. Aerod., 91, 247-264. https://doi.org/10.1016/S0167-6105(02)00349-5
- Yoshie, R., Mochida, A. Tominaga, Y., Kataoka, H., Harimoto, K., Nozu, T. and Shirasawa, T. (2007), "Cooperative project for CFD prediction of pedestrian wind environment in the Architectural Institute of Japan", J. Wind Eng. Ind. Aerod., 95, 1551-1578. https://doi.org/10.1016/j.jweia.2007.02.023
Cited by
- Stabilized finite element technique and its application for turbulent flow with high Reynolds number vol.14, pp.5, 2011, https://doi.org/10.12989/was.2011.14.5.465
- CFD practical application in conceptual design of a 425 m cable-stayed bridge vol.13, pp.4, 2010, https://doi.org/10.12989/was.2010.13.4.309