DOI QR코드

DOI QR Code

Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes

  • Xiang, H.J. (School of Civil Engineering, Beijing Jiaotong University) ;
  • Shi, Z.F. (School of Civil Engineering, Beijing Jiaotong University)
  • Received : 2008.07.22
  • Accepted : 2009.02.04
  • Published : 2009.09.25

Abstract

Based on the theory of piezoelasticity, an analytical solution for a typical multilayer piezoelectric composite cantilever is obtained by the Airy function method. The piezoelectric cantilever may consist of any number of layers. Moreover, the material and thickness for different layers may be different. The solution obtained in the present paper is concise and can be easily applied for the bending analysis of multilayer piezoelectric actuators considering the effect of bonding layers and electrodes. At last, a comprehensive parametric study is conducted to show the influence of electromechanical coupling (EMC), the number of piezoelectric layers, the elastic modulus of elastic layer and the thickness ratio on the bending behavior of actuators. Some interesting results for the design of multilayer piezoelectric actuators are presented.

Keywords

References

  1. Ballas, R.G., Schlaak, H.F. and Schmid, A.J. (2006), "The constituent equations of piezoelectric multilayer bending actuators in closed analytical form and experimental results", Sensor. Actuat. A-Phys., 130, 91-98.
  2. Brissaud, M. (2004), "Modelling of non-symmetric piezoelectric bimorphs", J. Micromech. Microeng., 14(11), 1507-1518. https://doi.org/10.1088/0960-1317/14/11/011
  3. Brissaud, M., Ledren, S. and Gonnard, P. (2003), "Modelling of a cantilever non-symmetric piezoelectric bimorph", J. Micromech. Microeng., 13(6), 832-844. https://doi.org/10.1088/0960-1317/13/6/306
  4. Cheng, J.Q., Wang, B. and Du, S.Y. (2005), "A theoretical analysis of piezoelectric/composite anisotropic laminate with larger-amplitude deflection effect, Part I: Fundamental equations", Int. J. Solids Struct., 42, 6166-6180. https://doi.org/10.1016/j.ijsolstr.2005.04.007
  5. Desmare, R. (1999), "Modeling of multilayer piezoelectric structures", Ferroelectrics, 224(1), 195-202. https://doi.org/10.1080/00150199908210567
  6. DeVoe, D.L. and Pisano, A.P. (1997), "Modeling and optimal design of piezoelectric cantilever microactuators", J. Microelectromech. S., 6(3), 266-270. https://doi.org/10.1109/84.623116
  7. Fernandes, A. and Pouget, J. (2002), "An accurate modelling of piezoelectric multi-layer plates", Eur. J. Mech. A-Solid., 21(4), 629-651. https://doi.org/10.1016/S0997-7538(02)01224-X
  8. Ha, S.K. and Kim, Y.H. (2002), "Analysis of a piezoelectric multimorph in extensional and flexural motions", J. Sound Vib., 253(5), 1001-1014. https://doi.org/10.1006/jsvi.2001.4040
  9. Heyliger, P. and Brooks, S. (1996), "Exact solution for laminated piezoelectric plates in cylindrical bending", J. Appl. Mech. ASME, 63, 903-910. https://doi.org/10.1115/1.2787245
  10. Huang, C., Lin, Y.Y. and Tang, T.A. (2004), "Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state", J. Micromech. Microeng., 14, 530-534. https://doi.org/10.1088/0960-1317/14/4/013
  11. Lee, S.Y., Ko, B. and Yang, W. (2005), "Theoretical modeling, experiments and optimization of piezoelectric multimorph", Smart Mater. Struct., 14(6), 1343-1352. https://doi.org/10.1088/0964-1726/14/6/026
  12. Li, S.Q., Liu, Z.X., Zhang, J.G. and Sun, Y. (1999), "Three-dimensional and simplified analysis on static electromechanical mechanism of piezoelectric materials", J. Shanghai Jiaotong Univ., 33(6), 737-741.
  13. Lin, Q.R., Liu, Z.X. and Wang, Z.L. (2001), "Analysis of beams with piezoelectric actuators", Appl. Math. Mech., 22(9), 1074-1081.
  14. Liu, M., Tong, J., Wang, L. and Cui, T. (2006), "Theoretical analysis of the sensing and actuating effects of piezoelectric multimorph cantilevers", Microsyst. Technol., 12(4), 335-342. https://doi.org/10.1007/s00542-005-0062-2
  15. Marcus, M.A. (1984), "Performance characteristics of piezoelectric polymer flexure mode devices", Ferroelectrics, 57, 203-220. https://doi.org/10.1080/00150198408012763
  16. Pan, E. (2001), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech. ASME, 68, 608-618. https://doi.org/10.1115/1.1380385
  17. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Mech. Sci., 43, 321-339.
  18. Park, S.E. and Shrout, T.R. (1997), "Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals", J. Appl. Phys., 82, 1804-1811. https://doi.org/10.1063/1.365983
  19. Shi, Z.F., Xiang, H.J. and Spencer, B.F. (2006), "Exact analysis of multi-layer piezoelectric/composite cantilevers", Smart Mater. Struct., 15(5), 1447-1458. https://doi.org/10.1088/0964-1726/15/5/034
  20. Smits, J.G. and Ballato, A. (1994), "Dynamic admittance matrix of piezoelectric cantilever bimorphs", J. Microelectromech. S., 3(3), 105-112. https://doi.org/10.1109/84.311560
  21. Smits, J.G., Dalke, S.I. and Cooney, T.K. (1991), "The constituent equations of piezoelectric bimorphs", Sensor. Actuat. A-Phys., 28(1), 41-61. https://doi.org/10.1016/0924-4247(91)80007-C
  22. Tadmor, E.B. and Kosa, G. (2003), "Electromechanical coupling correction for piezoelectric layered beams", J. Microelectromech. S., 12(6), 899-906. https://doi.org/10.1109/JMEMS.2003.820286
  23. Wang, R.J., et al. (1983), Hand book for marine acoustic materials, Science Press, Beijing.
  24. Wang, F., Tang, G.J. and Li, D.K. (2007), "Accurate modeling of a piezoelectric composite beam", Smart Mater. Struct., 16, 1595-1602. https://doi.org/10.1088/0964-1726/16/5/013
  25. Weinberg, M.S. (1999), "Working equations for piezoelectric actuators and sensors", J. Microelectromech. S., 8(4), 529-533. https://doi.org/10.1109/84.809069
  26. Xiang, H.J. (2007), "Characters of functionally graded piezoelectric smart beams and their applications", Beijing Jiaotong University, PhD, Beijing.
  27. Xiang, H.J. and Shi, Z.F. (2008), "Static Analysis for Multi-layered Piezoelectric Cantilevers", Int. J. Solids Struct., 45(1), 113-128. https://doi.org/10.1016/j.ijsolstr.2007.07.022
  28. Yang, J. and Xiang, H.J. (2007), "Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators", Smart Mater. Struct., 16, 784-797. https://doi.org/10.1088/0964-1726/16/3/028
  29. Zhou, Y.G., Chen, Y.M. and Ding, H.J. (2005), "Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model", Smart Struct. Syst., 1(3), 309-324. https://doi.org/10.12989/sss.2005.1.3.309

Cited by

  1. Analytical solution of piezoelectric composite stack transducers vol.24, pp.13, 2013, https://doi.org/10.1177/1045389X13479185
  2. Electromechanical analysis of piezoelectric beam-type transducers with interlayer slip vol.60, pp.8, 2013, https://doi.org/10.1109/TUFFC.2013.2757
  3. Theoretical analysis of a resistance adjusting type piezoelectric cylindrical transducer vol.28, pp.20, 2017, https://doi.org/10.1177/1045389X17704068
  4. Electromechanical analysis of 2-2 cement-based piezoelectric transducers in series electrically vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.267
  5. Dynamic Analytical Solution of a Piezoelectric Stack Utilized in an Actuator and a Generator vol.8, pp.10, 2018, https://doi.org/10.3390/app8101779
  6. Effects of electrodes and electrical connections of piezoelectric layers on dynamic characteristics of radially polarized multilayer piezoelectric cylindrical transducers pp.1530-8138, 2019, https://doi.org/10.1177/1045389X18803454
  7. A new piezoelectric hollow cylindrical transducer with multiple concentric annular metal fillers vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab0318
  8. Control of PKM machine tools using piezoelectric self-sensing actuators on basis of the functional principle of a scale with a vibrating string vol.6, pp.2, 2009, https://doi.org/10.12989/sss.2010.6.2.167
  9. Effects of electrodes and protective layers on the electromechanical characteristics of piezoelectric stack actuators vol.28, pp.None, 2009, https://doi.org/10.1177/0963693519877419
  10. Modeling and electromechanical performance analysis of frequency-variable piezoelectric stack transducers vol.31, pp.6, 2009, https://doi.org/10.1177/1045389x20905982