References
- Afaq, K., Karama, M. and Mistou, S. (2003), "A new refined model for laminated structures", Comptes Rendus des JNC13, Strasbourg, France, 12-14 mars, 283-292.
- Akhras, G. and Li, W.C. (2005), "Static and free vibration analysis of composite plates using spline finite strips with higher-order shear deformation", Compos. Part B, 36, 496-503. https://doi.org/10.1016/j.compositesb.2005.03.001
- Akhras, G. and Li, W.C. (2007), "Spline finite strip analysis of composite plates based on higher-order zigzag composite plate theory", Compos. Struct., 78(1), 112-118. https://doi.org/10.1016/j.compstruct.2005.08.016
- Akhras, G. and Li, W.C. (2007), "Three dimensional static, vibration and stability analysis of piezoelectric composite plates using finite layer method", Smart Mater. Struct., 16(3), 561-569. https://doi.org/10.1088/0964-1726/16/3/002
- Cheung, M.S., Li, W.C. and Chidiac, S.E. (1996), Finite Strip Analysis of Bridges, London: E & FN SPON.
- Cho, M.H. and Parmerter, R.R. (1993), "Efficient higher order composite plate theory for general lamination configurations", AIAA J., 31(7), 1299-1306. https://doi.org/10.2514/3.11767
- Dawe, D.J. (2002), "Use of the finite strip method in predicting the behaviors of composite laminated structures", Compos. Struct., 57(1), 11-36. https://doi.org/10.1016/S0263-8223(02)00059-4
- Heyliger, P. (1994), "Static behavior of laminated elastic/piezoelectric plates", AIAA J., 32, 2481-4. https://doi.org/10.2514/3.12321
- Kant, T. and Swaminathan, K. (2001), "Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher-order refined theory", Compos. Struct., 53, 73-85. https://doi.org/10.1016/S0263-8223(00)00180-X
- Kogl, M. and Bucalem, M.L. (2005), "A family of piezoelectric MITC plate elements", Compos. Struct., 83(15-16), 1277-1297. https://doi.org/10.1016/j.compstruc.2004.04.025
- Kong, J. and Cheung, Y.K. (1993), "Application of the spline finite strip to the analysis of shear deformable plates", Compos. Struct., 46(6), 985-988. https://doi.org/10.1016/0045-7949(93)90083-P
- Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102
- Phan, N.D. and Reddy, J.N. (1985), "Analysis of laminated composite plates using a higher-order deformation theory", Int. J. Numer. Meth. Eng., 21, 2201-2219. https://doi.org/10.1002/nme.1620211207
- Ramos Loja, M.A., Infante Barbosa, J., Mota Soares, C.M. and Mota Soares, C.A. (2001), "Analysis of piezolaminated plate structures by spline finite strip method", Compos. Struct., 79, 2321-2333. https://doi.org/10.1016/S0045-7949(01)00065-7
- Ramos Loja, M.A., Mota Soares, C.M. and Mota Soares, C.A. (2002), "Modelling and design of adaptive structures using B-spline method", Compos. Struct., 57, 245-251. https://doi.org/10.1016/S0263-8223(02)00091-0
- Ramos Loja, M.A., Mota Soares, C.M., Mota Soares, C.A. (2001), "Higher-order B-spline finite strip model for laminated adaptive structures", Compos. Struct., 52, 419-427. https://doi.org/10.1016/S0263-8223(01)00032-0
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, Second edition, Boca Raton, CRC Press.
- Sheikh, A.H. and Chakrabarti, A. (2003), "A new plate bending element based on higher-order shear deformation theory for analysis of composite plates", Finite Elem. Anal. Des., 39(9), 883-903. https://doi.org/10.1016/S0168-874X(02)00137-3
- Shu, X.P. and Sun, L.X. (1994), "An improved simple higher-order theory for laminated composite plates", Compos. Struct., 50(2), 231-236.
- Topdar, P., Chakraborti, A. and Sheikl, A.H. (2004), "An efficient hybrid plate model for analysis and control of smart sandwich laminates", Comput. Method. Appl. M., 193, 4591-4610. https://doi.org/10.1016/j.cma.2004.03.008
- Touratier, M. (1991), "An efficient standard plate-theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y