참고문헌
- Bellan, C. and Bossis, G. (2002), "Field dependence of viscoelastic properties of MR elastomers", Int. J. Mod. Phys. B, 16(17&18), 2447-2453. https://doi.org/10.1142/S0217979202012499
- Davis, C.L. and Lesieutre, G.A. (2000), "An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness", J. Sound Vib., 232(3), 601-617. https://doi.org/10.1006/jsvi.1999.2755
- Deng, H.X., Gong, X.L. and Wang, L.H. (2006), "Development of an adaptive tuned vibration absorber with magnetorheological elastomer", Smart Mater. Struct., 15(5), N111-N116. https://doi.org/10.1088/0964-1726/15/5/N02
- Ginder, J.M., Clark, S.M., Schlotter, W.F. and Nichols, M.E. (2002), "Magnetostrictive phenomena in magnetorheological elastomers", Int. J. Mod. Phys. B, 16(17&18), 2412-2418. https://doi.org/10.1142/S021797920201244X
- Gong, X.L., Zhang, X.Z. and Zhang, P.Q. (2005), "Fabrication and characterization of isotropic magnetorheological elastomers", Polym. Test., 24(3), 324-329. https://doi.org/10.1016/j.polymertesting.2004.11.003
- Lee, E.C., Nian, C.Y. and Tarng, Y.S. (2001), "Design of a dynamic vibration absorber against vibrations in turning operations", J. Mater. Process. Tech., 108, 278-285. https://doi.org/10.1016/S0924-0136(00)00836-0
- Li, W.H. and Du, H. (2002), "Nonlinear rheological behavior of magnetorheological fluids: step-strain experiments", Smart Mater. Struct., 11, 209-217. https://doi.org/10.1088/0964-1726/11/2/304
- Li, W.H., Du, H. and Guo, N.Q. (2004), "Dynamic behavior of MR suspensions at moderate flux densities", Mater. Sci. Eng. A, 371, 9-15. https://doi.org/10.1016/S0921-5093(02)00932-2
- Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284, 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
- Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284, 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
- Lokander, M. and Stenberg, B. (2003), "Performance of isotropic magnetorheological rubber materials", Polym. Test., 22(3), 245-251. https://doi.org/10.1016/S0142-9418(02)00043-0
- Sun, J.Q., Jolly, M.R. and Norris, M.A. (1995), "Passive, adaptive, and active tuned vibration absorbers-a survey", J. Mech. Design, 117B, 234-242.
- Williams, K.A., Chiu, G.T.C. and Bernhard, R.J. (2005), "Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber", J. Sound Vib., 280, 211-234. https://doi.org/10.1016/j.jsv.2003.12.040
- Wu, Z. and Soong, T.T. (1996), "Modified bang-bang control law for structural control implementation", J. Eng. Mech. ASCE, 122(8), 771-777. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(771)
- Zhou, G.Y. (2004), "Complex shear modulus of a magnetorheological elastomer", Smart Mater. Struct., 13, 1203-1210. https://doi.org/10.1088/0964-1726/13/5/024
피인용 문헌
- Development of an MRE adaptive tuned vibration absorber with self-sensing capability vol.24, pp.9, 2015, https://doi.org/10.1088/0964-1726/24/9/095012
- An adaptive tuned vibration absorber based on multilayered MR elastomers vol.24, pp.4, 2015, https://doi.org/10.1088/0964-1726/24/4/045045
- Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields vol.20, pp.12, 2011, https://doi.org/10.1088/0964-1726/20/12/127001
- Performance of a semi-active/passive integrated isolator based on a magnetorheological elastomer and spring vol.26, pp.9, 2017, https://doi.org/10.1088/1361-665X/aa741d
- Study of PDMS based magnetorheological elastomers vol.412, 2013, https://doi.org/10.1088/1742-6596/412/1/012038
- A new approach for modeling of magnetorheological elastomers vol.27, pp.8, 2016, https://doi.org/10.1177/1045389X15615966
- Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles vol.28, pp.16, 2017, https://doi.org/10.1177/1045389X16672731
- Investigation on the phase-based fuzzy logic controller for magnetorheological elastomer vibration absorber vol.28, pp.6, 2017, https://doi.org/10.1177/1045389X16657417
- State observation–based control algorithm for dynamic vibration absorbing systems featuring magnetorheological elastomers: Principle and analysis vol.28, pp.18, 2017, https://doi.org/10.1177/1045389X17692047
- A state-of-the-art review on magnetorheological elastomer devices vol.23, pp.12, 2014, https://doi.org/10.1088/0964-1726/23/12/123001
- The design of an active–adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance vol.20, pp.7, 2011, https://doi.org/10.1088/0964-1726/20/7/075015
- Fabrication and characterization of PDMS based magnetorheological elastomers vol.22, pp.5, 2013, https://doi.org/10.1088/0964-1726/22/5/055035
- Study of magnetorheology and sensing capabilities of MR elastomers vol.412, 2013, https://doi.org/10.1088/1742-6596/412/1/012037
- Fabrication and characterisation of anisotropic magnetorheological elastomer with 45° iron particle alignment at various silicone oil concentrations vol.29, pp.2, 2018, https://doi.org/10.1177/1045389X17704071
- MRE Properties under Shear and Squeeze Modes and Applications vol.21, pp.15, 2010, https://doi.org/10.1177/1045389X09355666
- A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers vol.19, pp.3, 2010, https://doi.org/10.1088/0964-1726/19/3/035002
- Influence of magnetic field on dispersion and dissipation of electric field of low and medium frequencies in hybrid magnetorheological suspensions vol.27, 2015, https://doi.org/10.1016/j.jiec.2014.09.047
- Semi-active variable stiffness vibration control of vehicle seat suspension using an MR elastomer isolator vol.20, pp.10, 2011, https://doi.org/10.1088/0964-1726/20/10/105003
- Improving the critical speeds of high-speed trains using magnetorheological technology vol.22, pp.11, 2013, https://doi.org/10.1088/0964-1726/22/11/115012
- Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber vol.23, pp.1, 2014, https://doi.org/10.1088/0964-1726/23/1/015016
- Creep and recovery behaviors of magnetorheological elastomers vol.5, pp.3, 2010, https://doi.org/10.1007/s11465-010-0096-8
- Soft magnetorheological polymer gels with controllable rheological properties vol.22, pp.7, 2013, https://doi.org/10.1088/0964-1726/22/7/075029
- Damping Properties of Magnetorheological Elastomers vol.1143, 2017, https://doi.org/10.4028/www.scientific.net/AMR.1143.247
- Sensing capabilities of graphite based MR elastomers vol.20, pp.2, 2011, https://doi.org/10.1088/0964-1726/20/2/025022
- The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode vol.23, pp.7, 2014, https://doi.org/10.1088/0964-1726/23/7/075009
- Dynamic Characterization and Modeling of Isotropic Magnetorheological Elastomers Under Tensile-Compressive Loadings vol.53, pp.9, 2017, https://doi.org/10.1109/TMAG.2017.2698403
- Investigation of the durability of anisotropic magnetorheological elastomers based on mixed rubber vol.19, pp.8, 2010, https://doi.org/10.1088/0964-1726/19/8/085008
- Recent progress on the magnetorheological plastomers vol.6, pp.2, 2015, https://doi.org/10.1080/19475411.2015.1062437
- Dynamic characteristics and control of magnetorheological/electrorheological sandwich structures: A state-of-the-art review vol.27, pp.15, 2016, https://doi.org/10.1177/1045389X15620041
- Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes vol.26, pp.14, 2015, https://doi.org/10.1177/1045389X14568819
- Microstructure and magnetorheology of graphite-based MR elastomers vol.50, pp.9-10, 2011, https://doi.org/10.1007/s00397-011-0567-9
- A pendulum-like tuned vibration absorber and its application to a multi-mode system vol.26, pp.11, 2012, https://doi.org/10.1007/s12206-012-0857-x
- Experimental study and modeling of a novel magnetorheological elastomer isolator vol.22, pp.11, 2013, https://doi.org/10.1088/0964-1726/22/11/117001
- An Active-damping-compensated Magnetorheological Elastomer Adaptive Tuned Vibration Absorber vol.21, pp.10, 2010, https://doi.org/10.1177/1045389X10375485
- Suppressing harmonic vibrations of a miniature cryogenic cooler using an adaptive tunable vibration absorber based on magneto-rheological elastomers vol.82, pp.3, 2011, https://doi.org/10.1063/1.3553198
- Development and simulation evaluation of a magnetorheological elastomer isolator for seat vibration control vol.23, pp.9, 2012, https://doi.org/10.1177/1045389X11435431
- Note: Real time control of a tunable vibration absorber based on magnetorheological elastomer for suppressing tonal vibrations vol.83, pp.4, 2012, https://doi.org/10.1063/1.4704455
- Analysis of Vibration Characteristics of Magnetorheological Elastomer Sandwich Beam under Non-Homogeneous Magnetic Field vol.101, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.101-102.202
- Fabrication and dynamic viscoelastic properties of MR elastomers with silicone oil vol.59, pp.1, 2019, https://doi.org/10.3233/jae-171162
- Review on Seat Suspension System Technology Development vol.9, pp.14, 2009, https://doi.org/10.3390/app9142834
- Magnetic stimuli-response properties of polyurethane-based magnetorheological soluble gel vol.6, pp.9, 2009, https://doi.org/10.1088/2053-1591/ab2dc3
- Magneto-Rheological Variable Stiffness and Damping Torsional Vibration Control of Powertrain System vol.7, pp.None, 2009, https://doi.org/10.3389/fmats.2020.00121
- High performance magnetorheological elastomers strengthened by perpendicularly interacted flax fiber and carbonyl iron chains vol.29, pp.2, 2009, https://doi.org/10.1088/1361-665x/ab5e49
- Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing vol.25, pp.3, 2009, https://doi.org/10.12989/sss.2020.25.3.323
- Recent progress of magnetorheological elastomers: a review vol.29, pp.12, 2009, https://doi.org/10.1088/1361-665x/abbc77
- Magnetorheological elastomers - An underestimated class of soft actuator materials vol.32, pp.14, 2021, https://doi.org/10.1177/1045389x21990888
- Dynamic Behavior of Sandwich Structures with Magnetorheological Elastomer: A Review vol.14, pp.22, 2021, https://doi.org/10.3390/ma14227025