References
- Brockwell, P. J. and Davis, R. A. (2002), Introduction to Time Series and Forecasting, Springer-Verlag, Second Edition, New York.
- Chang, F-K. (ed.) (1999, 2001, 2003 and 2005), 1st, 2nd, 3rd and 4th International Workshops on Structural Health Monitoring, Stanford University, Stanford, CA.
- Lynch, J. P., Wang, Y. Lu, K-C., Hou, T-C. and Loh, C-H. (2006), "Post-seismic damage assessment of steel structures instrumented with self-interrogating wireless sensors", Proceedings of the 8th National Conference on Earthquake Engineering (8NCEE), San Francsico, CA.
- Nair, K. K., Kiremidjian, A. S. and Law, K. H. (2006), "Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure", J. Sound Vib., 291(2), 349-368. https://doi.org/10.1016/j.jsv.2005.06.016
- Nair, K. K. and Kiremidjian, A. S. (2007), "Time series-based structural damage detection algorithm using gaussian mixtures modeling", J. Dyn. Sys., Measurement, Control, 129, 285-293. https://doi.org/10.1115/1.2718241
- Noh, H., Nair, K. K., Kiremidjian, A. S. and Loh, C-H. (2007), "Application of a time series-based damage detection algorithm to the taiwanese benchmark experiment", Int. Conf. Appl. Statist. Probability in Civil Engineering, CD Rom, Chiba, Japan. ISBN 978-0-415-45211-3.
- Rice, J. A. (1999), Mathematical Statistics and Data Analysis, Second Edition, Duxbury Press, Second Edition, New York.
- Sohn, H., Farrar, C. R., Hunter, H. F. and Worden, K. (2001), "Applying the LANL statistical pattern recognition paradigm for structural health monitoring to data from a surface-effect fast patrol boat", Los Alamos National Laboratory Report LA-13761-MS, Los Alamos National Laboratory, Los Alamos, NM 87545.
Cited by
- Experimental Damage Identification of a Model Reticulated Shell vol.7, pp.4, 2017, https://doi.org/10.3390/app7040362
- Sequential structural damage diagnosis algorithm using a change point detection method vol.332, pp.24, 2013, https://doi.org/10.1016/j.jsv.2013.07.005
- Signal Processing Techniques for Vibration-Based Health Monitoring of Smart Structures vol.23, pp.1, 2016, https://doi.org/10.1007/s11831-014-9135-7
- Optimal selection of autoregressive model coefficients for early damage detectability with an application to wind turbine blades vol.70-71, 2016, https://doi.org/10.1016/j.ymssp.2015.09.007
- Autonomous Monitoring of Dynamic Response of In-Service Structures for Decision Support vol.141, pp.1, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001044
- Reliability analysis and damage detection in high-speed naval craft based on structural health monitoring data vol.10, pp.4, 2011, https://doi.org/10.1177/1475921710379516
- Structural damage detection and localisation using multivariate regression models and two-sample control statistics vol.11, pp.10, 2015, https://doi.org/10.1080/15732479.2014.949277
- Autoregressive statistical pattern recognition algorithms for damage detection in civil structures vol.31, 2012, https://doi.org/10.1016/j.ymssp.2012.02.014
- Structural health monitoring of progressive damage vol.44, pp.4, 2015, https://doi.org/10.1002/eqe.2562
- A robust damage-detection technique with environmental variability combining time-series models with principal components vol.29, pp.4, 2014, https://doi.org/10.1080/10589759.2014.949709
- Updating Structural Parameters with Spatially Incomplete Measurements Using Subspace System Identification vol.143, pp.7, 2017, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001226
- Damage classification and estimation in experimental structures using time series analysis and pattern recognition vol.24, pp.5, 2010, https://doi.org/10.1016/j.ymssp.2009.12.008
- SnowFort: An Open Source Wireless Sensor Network for Data Analytics in Infrastructure and Environmental Monitoring vol.14, pp.12, 2014, https://doi.org/10.1109/JSEN.2014.2358253
- Towards damage detection using blind source separation integrated with time-varying auto-regressive modeling vol.25, pp.1, 2016, https://doi.org/10.1088/0964-1726/25/1/015013
- Structural dynamic analysis using wavelets vol.1160, pp.1742-6596, 2019, https://doi.org/10.1088/1742-6596/1160/1/012016
- FootprintID : Indoor Pedestrian Identification through Ambient Structural Vibration Sensing vol.1, pp.3, 2009, https://doi.org/10.1145/3130954
- Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium vol.24, pp.4, 2009, https://doi.org/10.12989/sss.2019.24.4.507
- Nonlinear damage detection using linear ARMA models with classification algorithms vol.26, pp.1, 2009, https://doi.org/10.12989/sss.2020.26.1.023
- A review on the effective use of Artificial Intelligence for the analysis of cyclic loading on pile foundation vol.796, pp.1, 2009, https://doi.org/10.1088/1755-1315/796/1/012051
- Auto-Regressive Integrated Moving-Average Machine Learning for Damage Identification of Steel Frames vol.11, pp.13, 2009, https://doi.org/10.3390/app11136084