References
- Adams, R. D., Cawley, P., Pye, C. J. and Stone, B. J. (1978), "A vibration technique for non-destructively assessing the integrity of structures", J. Mech. Eng. Sci., 20, 93-100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
- Bendat, J. S. and Piersol, A. G. (1993), Engineering Applications of Correlation and Spectral Analysis, Wiley, USA.
- Bhalla, S. and Soh, C. K. (2003), "Structural impedance based damage diagnosis by piezo-transducers", Earthq. Eng. Struct. Dyn., 32(12), 1897-1916. https://doi.org/10.1002/eqe.307
- Brinker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303
- Doebling, S. W., Farrar, C. R. and Prime, M. B. (1998), "A summary review of vibration-based damage identification methods", The Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Elsener, B. (2005), "Long-term monitoring of electrically isolated post-tensioning tendons", Struct. Concrete, 6(3), 101-106. https://doi.org/10.1680/stco.2005.6.3.101
- Giurgiutiu, V. and Zagrai, A. N. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monitor., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
- Kabeya, K. (1998), "Structural health monitoring using multiple piezoelectric sensors and actuators", Master's thesis, Virginia Polytechnic Institute and State University.
- Kim, J. T. and Stubbs, N. (1995), "Improved damage identification method based on modal information", J. Sound. Vib., 259(1), 57-67.
- Kim, J. T., Park, J. H. and Lee, B. J. (2007), "Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions", Eng. Struct., 29(7), 263-280.
- Kim, J. T., Ryu, Y. S., Cho, H. M. and Stubbs, N. (2003a), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
- Kim, J. T., Yun, C. B., Ryu, Y. S. and Cho, H. M. (2003b), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., 17(3-4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467
- Kim, J. T., Na, W. B., Park, J. H. and Hong, D. S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceedings of SPIE, 6174, 61742O.
- Koo, K. Y., Park, S., Lee, J. J., Yun, C. B. and Inman, D. J. (2007), "Impedance-based structural health monitoring considering temperature effects", Proceedings of SPIE, 6532, 65320C.
- Law, S. S. and Lu, J. R. (2005), "Time domain responses of a prestressed beam and prestress identification", J. Sound Vib., 288(4-5), 1011-1025. https://doi.org/10.1016/j.jsv.2005.01.045
- Liang, C., Sun, F. P. and Rogers, C. A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Sys. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102
- Liang, C., Sun, F. P. and Rogers, C. A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(1), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
- Lin, T. Y. (1963), Design of Prestressed Concrete Structures, John Wiley & Sons, USA.
- Miyamoto, A., Tei, K., Nakamura, H. and Bull, J. W. (2000), "Behavior of prestressed beam strengthened with external tendons", J. Struct. Eng., 126, 1033-1044. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1033)
- Nawy, E.G. (1996), Prestress Concrete - A Fundamental Approach, Prentice Hall, USA.
- Park, G., Cudney, H. and Inman, D. J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Sys., ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
- Park, G., Farrar, C. R. and Scalea, F. L. (2006a), "Performance assessment and validation of piezoelectric activesensors in structural health monitoring", Smart Mater. Struct., 15(6), 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
- Park, G., Kabeya, K., Cudney, H. H. and Inman, D. J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J., 42, 249-258.
- Park, S., Ahmad, S., Yun, C. B. and Roh, Y. (2006b), "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques", Experimental Mech., 46(5), 609-618. https://doi.org/10.1007/s11340-006-8734-0
- Saiidi, M., Douglas, B. and Feng, S. (1994), "Prestress force effect on vibration frequency of concrete bridges", J. Struct. Eng., 120, 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233)
- Saiidi, M., Shield, J., O'connor, D. and Jutchens, E. (1996), "Variation of prestress force in a prestressed concrete bridge during the first 30 months", PCI J., 41, 66-72. https://doi.org/10.15554/pcij.09011996.66.72
- Stubbs, N. and Osegueda, R. (1990), "Global nondestructive damage evaluation in solids", Int. J. Analytical Experimental Modal Analysis, 5(2), 67-79.
- Yang, Y., Xu, J. and Soh, C. K. (2005), "Generic impedance-based model for structure-piezoceramic interacting system", J. Aerospace Eng., ASCE, 18(2), 93-101. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:2(93)
- Yang, Y. W., Hu, Y. H. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327
- Yi, J. H. and Yun, C. B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-446. https://doi.org/10.12989/sem.2004.17.3_4.445
Cited by
- Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
- Feasibility Study of Stress Measurement in Prestressing Tendons Using Villari Effect and Induced Magnetic Field vol.9, pp.11, 2013, https://doi.org/10.1155/2013/249829
- Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.375
- Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
- Bond slip detection of steel plate and concrete beams using smart aggregates vol.24, pp.11, 2015, https://doi.org/10.1088/0964-1726/24/11/115039
- Multiscale Structural Health Monitoring of Cable-Anchorage System Using Piezoelectric PZT Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/254785
- Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage vol.2015, 2015, https://doi.org/10.1155/2015/262975
- Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device vol.2014, 2014, https://doi.org/10.1155/2014/729027
- Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique vol.2014, 2014, https://doi.org/10.1155/2014/784731
- A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer vol.25, pp.7, 2016, https://doi.org/10.1088/0964-1726/25/7/075002
- FBG Sensors Encapsulated into 7-Wire Steel Strand for Tension Monitoring of a Prestressing Tendon vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.907
- A Parametric Study on Admittance Signatures of a PZT Transducer Under Free Vibration vol.22, pp.11, 2015, https://doi.org/10.1080/15376494.2013.864437
- Sensitivity to Axial Stress of Electro-Mechanical Impedance Measurements vol.56, pp.9, 2016, https://doi.org/10.1007/s11340-016-0198-2
- Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges vol.17, pp.9, 2017, https://doi.org/10.3390/s17091989
- Wireless Impedance Sensor Node and Interface Washer for Damage Monitoring in Structural Connections vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.871
- A Smart Steel Strand for the Evaluation of Prestress Loss Distribution in Post-tensioned Concrete Structures vol.20, pp.16, 2009, https://doi.org/10.1177/1045389X09347021
- Development and Application of Structural Health Monitoring System Based on Piezoelectric Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/270927
- Embedded Electromechanical Impedance and Strain Sensors for Health Monitoring of a Concrete Bridge vol.2015, 2015, https://doi.org/10.1155/2015/821395
- Prestressing Loss Management for PSC Girder Tendon Based on EM Sensing vol.28, pp.4, 2015, https://doi.org/10.7734/COSEIK.2015.28.4.369
- Effects of foundation damage and water-level change on vibration modal parameters of gravity-type caisson structure vol.58, pp.2, 2015, https://doi.org/10.1007/s11431-014-5748-1
- Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
- Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder vol.28, pp.6, 2015, https://doi.org/10.7734/COSEIK.2015.28.6.691
- Piezoelectric Impedance Based Prestress Force Monitoring for PSC Beam vol.255-260, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.255-260.742
- Prestress Force Identification Based on Forced Vibration Tests of Eccentrically Prestressed Concrete Beam vol.479-481, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.479-481.733
- Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors vol.18, pp.12, 2018, https://doi.org/10.3390/s18124106
- Prestress Loss Identification Based on Dynamic Vehicle Responses vol.144, pp.9, 2018, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001514
- A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures vol.18, pp.5, 2018, https://doi.org/10.3390/s18051307
- Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements vol.6, pp.5, 2009, https://doi.org/10.12989/sss.2010.6.5_6.711
- Non-destructive evaluation of concrete quality using PZT transducers vol.6, pp.7, 2010, https://doi.org/10.12989/sss.2010.6.7.851
- Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon vol.7, pp.4, 2009, https://doi.org/10.12989/sss.2011.7.4.303
- Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections vol.7, pp.5, 2009, https://doi.org/10.12989/sss.2011.7.5.393
- Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.489
- Comparative study on displacement measurement sensors for high-speed railroad bridge vol.21, pp.5, 2009, https://doi.org/10.12989/sss.2018.21.5.637
- Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique vol.19, pp.1, 2009, https://doi.org/10.3390/s19010047
- Investigation of Applicability of an Embedded EM Sensor to Measure the Tension of a PSC Girder vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/2469647
- Experimental Study on Damage Detection in ECC-Concrete Composite Beams Using Piezoelectric Transducers vol.19, pp.12, 2019, https://doi.org/10.3390/s19122799
- Field applicability of a machine learning-based tensile force estimation for pre-stressed concrete bridges using an embedded elasto-magnetic sensor vol.19, pp.1, 2009, https://doi.org/10.1177/1475921719842340
- Refined calculation of time-dependent prestress losses in prestressed concrete girders vol.16, pp.10, 2020, https://doi.org/10.1080/15732479.2020.1712438
- Anchor Force Monitoring Using Impedance Technique with Single-Point Mount Lead-Zirconate-Titanate Interface: A Feasibility Study vol.11, pp.9, 2009, https://doi.org/10.3390/buildings11090382