DOI QR코드

DOI QR Code

Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges

  • Kim, Jeong-Tae (Department of Ocean Engineering, Pukyong National University) ;
  • Park, Jae-Hyung (Department of Ocean Engineering, Pukyong National University) ;
  • Hong, Dong-Soo (Department of Ocean Engineering, Pukyong National University) ;
  • Cho, Hyun-Man (Department of Ocean Engineering, Pukyong National University) ;
  • Na, Won-Bae (Department of Ocean Engineering, Pukyong National University) ;
  • Yi, Jin-Hak (Korea Ocean Research & Development Institute)
  • Received : 2007.11.07
  • Accepted : 2008.07.30
  • Published : 2009.01.25

Abstract

A vibration-impedance-based monitoring method is proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm using the change in frequency responses is formulated to detect the occurrence of damage in PSC girders. Secondly, a local damage detection algorithm using the change in electro-mechanical impedance features is selected to identify the prestress-loss in tendon and anchoring members. Thirdly, a prestress-loss prediction algorithm using the change in natural frequencies is selected to estimate the extent of prestress-loss in PSC girders. Finally, the feasibility of the proposed method is experimentally evaluated on a scaled PSC girder model for which acceleration responses and electro-mechanical impedances were measured for several damage scenarios of prestress-loss.

Keywords

References

  1. Adams, R. D., Cawley, P., Pye, C. J. and Stone, B. J. (1978), "A vibration technique for non-destructively assessing the integrity of structures", J. Mech. Eng. Sci., 20, 93-100. https://doi.org/10.1243/JMES_JOUR_1978_020_016_02
  2. Bendat, J. S. and Piersol, A. G. (1993), Engineering Applications of Correlation and Spectral Analysis, Wiley, USA.
  3. Bhalla, S. and Soh, C. K. (2003), "Structural impedance based damage diagnosis by piezo-transducers", Earthq. Eng. Struct. Dyn., 32(12), 1897-1916. https://doi.org/10.1002/eqe.307
  4. Brinker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10, 441-445. https://doi.org/10.1088/0964-1726/10/3/303
  5. Doebling, S. W., Farrar, C. R. and Prime, M. B. (1998), "A summary review of vibration-based damage identification methods", The Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  6. Elsener, B. (2005), "Long-term monitoring of electrically isolated post-tensioning tendons", Struct. Concrete, 6(3), 101-106. https://doi.org/10.1680/stco.2005.6.3.101
  7. Giurgiutiu, V. and Zagrai, A. N. (2005), "Damage detection in thin plates and aerospace structures with the electro-mechanical impedance method", Struct. Health Monitor., 4(2), 99-118. https://doi.org/10.1177/1475921705049752
  8. Kabeya, K. (1998), "Structural health monitoring using multiple piezoelectric sensors and actuators", Master's thesis, Virginia Polytechnic Institute and State University.
  9. Kim, J. T. and Stubbs, N. (1995), "Improved damage identification method based on modal information", J. Sound. Vib., 259(1), 57-67.
  10. Kim, J. T., Park, J. H. and Lee, B. J. (2007), "Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions", Eng. Struct., 29(7), 263-280.
  11. Kim, J. T., Ryu, Y. S., Cho, H. M. and Stubbs, N. (2003a), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  12. Kim, J. T., Yun, C. B., Ryu, Y. S. and Cho, H. M. (2003b), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., 17(3-4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467
  13. Kim, J. T., Na, W. B., Park, J. H. and Hong, D. S. (2006), "Hybrid health monitoring of structural joints using modal parameters and EMI signatures", Proceedings of SPIE, 6174, 61742O.
  14. Koo, K. Y., Park, S., Lee, J. J., Yun, C. B. and Inman, D. J. (2007), "Impedance-based structural health monitoring considering temperature effects", Proceedings of SPIE, 6532, 65320C.
  15. Law, S. S. and Lu, J. R. (2005), "Time domain responses of a prestressed beam and prestress identification", J. Sound Vib., 288(4-5), 1011-1025. https://doi.org/10.1016/j.jsv.2005.01.045
  16. Liang, C., Sun, F. P. and Rogers, C. A. (1994), "Coupled electromechanical analysis of adaptive material systems-determination of the actuator power consumption and system energy transfer", J. Intell. Mater. Sys. Struct., 5(1), 12-20. https://doi.org/10.1177/1045389X9400500102
  17. Liang, C., Sun, F. P. and Rogers, C. A. (1996), "Electro-mechanical impedance modeling of active material systems", Smart Mater. Struct., 5(1), 171-186. https://doi.org/10.1088/0964-1726/5/2/006
  18. Lin, T. Y. (1963), Design of Prestressed Concrete Structures, John Wiley & Sons, USA.
  19. Miyamoto, A., Tei, K., Nakamura, H. and Bull, J. W. (2000), "Behavior of prestressed beam strengthened with external tendons", J. Struct. Eng., 126, 1033-1044. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1033)
  20. Nawy, E.G. (1996), Prestress Concrete - A Fundamental Approach, Prentice Hall, USA.
  21. Park, G., Cudney, H. and Inman, D. J. (2000), "Impedance-based health monitoring of civil structural components", J. Infrastruct. Sys., ASCE, 6(4), 153-160. https://doi.org/10.1061/(ASCE)1076-0342(2000)6:4(153)
  22. Park, G., Farrar, C. R. and Scalea, F. L. (2006a), "Performance assessment and validation of piezoelectric activesensors in structural health monitoring", Smart Mater. Struct., 15(6), 1673-1683. https://doi.org/10.1088/0964-1726/15/6/020
  23. Park, G., Kabeya, K., Cudney, H. H. and Inman, D. J. (1999), "Impedance-based structural health monitoring for temperature varying applications", JSME Int. J., 42, 249-258.
  24. Park, S., Ahmad, S., Yun, C. B. and Roh, Y. (2006b), "Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques", Experimental Mech., 46(5), 609-618. https://doi.org/10.1007/s11340-006-8734-0
  25. Saiidi, M., Douglas, B. and Feng, S. (1994), "Prestress force effect on vibration frequency of concrete bridges", J. Struct. Eng., 120, 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233)
  26. Saiidi, M., Shield, J., O'connor, D. and Jutchens, E. (1996), "Variation of prestress force in a prestressed concrete bridge during the first 30 months", PCI J., 41, 66-72. https://doi.org/10.15554/pcij.09011996.66.72
  27. Stubbs, N. and Osegueda, R. (1990), "Global nondestructive damage evaluation in solids", Int. J. Analytical Experimental Modal Analysis, 5(2), 67-79.
  28. Yang, Y., Xu, J. and Soh, C. K. (2005), "Generic impedance-based model for structure-piezoceramic interacting system", J. Aerospace Eng., ASCE, 18(2), 93-101. https://doi.org/10.1061/(ASCE)0893-1321(2005)18:2(93)
  29. Yang, Y. W., Hu, Y. H. and Lu, Y. (2008), "Sensitivity of PZT impedance sensors for damage detection of concrete structures", Sensors, 8(1), 327-346. https://doi.org/10.3390/s8010327
  30. Yi, J. H. and Yun, C. B. (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-446. https://doi.org/10.12989/sem.2004.17.3_4.445

Cited by

  1. Recent R&D activities on structural health monitoring in Korea vol.3, pp.1, 2016, https://doi.org/10.12989/smm.2016.3.1.091
  2. Feasibility Study of Stress Measurement in Prestressing Tendons Using Villari Effect and Induced Magnetic Field vol.9, pp.11, 2013, https://doi.org/10.1155/2013/249829
  3. Local dynamic characteristics of PZT impedance interface on tendon anchorage under prestress force variation vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.375
  4. Multiscale Acceleration-Dynamic Strain-Impedance Sensor System for Structural Health Monitoring vol.8, pp.10, 2012, https://doi.org/10.1155/2012/709208
  5. Bond slip detection of steel plate and concrete beams using smart aggregates vol.24, pp.11, 2015, https://doi.org/10.1088/0964-1726/24/11/115039
  6. Multiscale Structural Health Monitoring of Cable-Anchorage System Using Piezoelectric PZT Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/254785
  7. Feasibility Verification of Mountable PZT-Interface for Impedance Monitoring in Tendon-Anchorage vol.2015, 2015, https://doi.org/10.1155/2015/262975
  8. Locating Damage Using Integrated Global-Local Approach with Wireless Sensing System and Single-Chip Impedance Measurement Device vol.2014, 2014, https://doi.org/10.1155/2014/729027
  9. Impedance-Based Cable Force Monitoring in Tendon-Anchorage Using Portable PZT-Interface Technique vol.2014, 2014, https://doi.org/10.1155/2014/784731
  10. A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer vol.25, pp.7, 2016, https://doi.org/10.1088/0964-1726/25/7/075002
  11. FBG Sensors Encapsulated into 7-Wire Steel Strand for Tension Monitoring of a Prestressing Tendon vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.907
  12. A Parametric Study on Admittance Signatures of a PZT Transducer Under Free Vibration vol.22, pp.11, 2015, https://doi.org/10.1080/15376494.2013.864437
  13. Sensitivity to Axial Stress of Electro-Mechanical Impedance Measurements vol.56, pp.9, 2016, https://doi.org/10.1007/s11340-016-0198-2
  14. Development of Embedded EM Sensors for Estimating Tensile Forces of PSC Girder Bridges vol.17, pp.9, 2017, https://doi.org/10.3390/s17091989
  15. Wireless Impedance Sensor Node and Interface Washer for Damage Monitoring in Structural Connections vol.15, pp.6, 2012, https://doi.org/10.1260/1369-4332.15.6.871
  16. A Smart Steel Strand for the Evaluation of Prestress Loss Distribution in Post-tensioned Concrete Structures vol.20, pp.16, 2009, https://doi.org/10.1177/1045389X09347021
  17. Development and Application of Structural Health Monitoring System Based on Piezoelectric Sensors vol.9, pp.11, 2013, https://doi.org/10.1155/2013/270927
  18. Embedded Electromechanical Impedance and Strain Sensors for Health Monitoring of a Concrete Bridge vol.2015, 2015, https://doi.org/10.1155/2015/821395
  19. Prestressing Loss Management for PSC Girder Tendon Based on EM Sensing vol.28, pp.4, 2015, https://doi.org/10.7734/COSEIK.2015.28.4.369
  20. Effects of foundation damage and water-level change on vibration modal parameters of gravity-type caisson structure vol.58, pp.2, 2015, https://doi.org/10.1007/s11431-014-5748-1
  21. Optimal Sensor Placement for Stay Cable Damage Identification of Cable-Stayed Bridge under Uncertainty vol.9, pp.12, 2013, https://doi.org/10.1155/2013/361594
  22. Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder vol.28, pp.6, 2015, https://doi.org/10.7734/COSEIK.2015.28.6.691
  23. Piezoelectric Impedance Based Prestress Force Monitoring for PSC Beam vol.255-260, pp.1662-8985, 2011, https://doi.org/10.4028/www.scientific.net/AMR.255-260.742
  24. Prestress Force Identification Based on Forced Vibration Tests of Eccentrically Prestressed Concrete Beam vol.479-481, pp.1662-8985, 2012, https://doi.org/10.4028/www.scientific.net/AMR.479-481.733
  25. Evaluation of Prestress Loss Distribution during Pre-Tensioning and Post-Tensioning Using Long-Gauge Fiber Bragg Grating Sensors vol.18, pp.12, 2018, https://doi.org/10.3390/s18124106
  26. Prestress Loss Identification Based on Dynamic Vehicle Responses vol.144, pp.9, 2018, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001514
  27. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures vol.18, pp.5, 2018, https://doi.org/10.3390/s18051307
  28. Autonomous smart sensor nodes for global and local damage detection of prestressed concrete bridges based on accelerations and impedance measurements vol.6, pp.5, 2009, https://doi.org/10.12989/sss.2010.6.5_6.711
  29. Non-destructive evaluation of concrete quality using PZT transducers vol.6, pp.7, 2010, https://doi.org/10.12989/sss.2010.6.7.851
  30. Monitoring of tension force and load transfer of ground anchor by using optical FBG sensors embedded tendon vol.7, pp.4, 2009, https://doi.org/10.12989/sss.2011.7.4.303
  31. Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections vol.7, pp.5, 2009, https://doi.org/10.12989/sss.2011.7.5.393
  32. Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection vol.9, pp.6, 2012, https://doi.org/10.12989/sss.2012.9.6.489
  33. Comparative study on displacement measurement sensors for high-speed railroad bridge vol.21, pp.5, 2009, https://doi.org/10.12989/sss.2018.21.5.637
  34. Tension Force Estimation in Axially Loaded Members Using Wearable Piezoelectric Interface Technique vol.19, pp.1, 2009, https://doi.org/10.3390/s19010047
  35. Investigation of Applicability of an Embedded EM Sensor to Measure the Tension of a PSC Girder vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/2469647
  36. Experimental Study on Damage Detection in ECC-Concrete Composite Beams Using Piezoelectric Transducers vol.19, pp.12, 2019, https://doi.org/10.3390/s19122799
  37. Field applicability of a machine learning-based tensile force estimation for pre-stressed concrete bridges using an embedded elasto-magnetic sensor vol.19, pp.1, 2009, https://doi.org/10.1177/1475921719842340
  38. Refined calculation of time-dependent prestress losses in prestressed concrete girders vol.16, pp.10, 2020, https://doi.org/10.1080/15732479.2020.1712438
  39. Anchor Force Monitoring Using Impedance Technique with Single-Point Mount Lead-Zirconate-Titanate Interface: A Feasibility Study vol.11, pp.9, 2009, https://doi.org/10.3390/buildings11090382