Acknowledgement
Supported by : Turkish Scientific and Research Council (TUBITAK)
References
- ANSYS (2004), ANSYS user manual, ANSYS, Inc., Canonsburg, PA, USA, (www.ansys.com).
- Baillargeon, B. P. and Vel, S. S. (2005), "Active vibration suppression of sandwich beams using shear actuators: experiments and numerical simulations", J. Intell. Mater. Sys. Struct., 16, 517-530. https://doi.org/10.1177/1045389X05053154
- Bruant, I., Coffignal, G., Lene, F. ad Verge, M. (2001), "Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation", Smart Mater. Struct., 10, 404-408. https://doi.org/10.1088/0964-1726/10/2/402
- Choi, S. B., Park, S. B. and Fukuda, T. (1998), "A proof of concept investigation on active vibration control of hybrid structures", Mechatronics, 8, 673-689. https://doi.org/10.1016/S0957-4158(98)00029-4
- Dong, X. J., Meng, G. and Peng, J. C. (2006), "Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study", J. Sound. Vib., 297, 680-693. https://doi.org/10.1016/j.jsv.2006.04.021
- Fariborzi, F., Golnaraghi, M. F. and Heppler, G. R. (1997), "Experimental control of free and forced structural vibration using a linear coupling strategy", Smart Mater. Struct., 6, 540-548. https://doi.org/10.1088/0964-1726/6/5/005
- Gabbert, U., Trajkov, T. M. and Koppe, H. (2002), "Modelling, control and simulation of piezoelectric smart structures using finite element method and optimal control", Mechanics, Automatic Control and Robotics, 3, 417-430.
- Jha, R. and Rower, J. (2002), "Experimental investigation of active vibration control using neural networks and piezoelectric actuators", Smart Mater. Struct. 11, 115-121. https://doi.org/10.1088/0964-1726/11/1/313
- Karagulle, H., Malgaca, L. and Oktem, H. F. (2004), "Analysis by active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13, 661-667. https://doi.org/10.1088/0964-1726/13/4/003
- Kumar, R. and Singh, S. P. (2006), "Adaptive hybrid control of smart structures subjected to multiple disturbances", Smart Mater. Struct., 15, 1345-1357. https://doi.org/10.1088/0964-1726/15/5/024
- Kusculuoglu, Z. K., Fallahi, B. and Roston, T. J. (2004), "Finite element model of a beam with a piezoceramic actuator", J. Sound. Vib., 276, 27-44. https://doi.org/10.1016/j.jsv.2003.07.014
- MATLAB (2004), The MathWorks, Inc., United States, www.mathworks.com.
- Meng, G., Yeb, L., Dong, X-J. and Wei, K. (2006), "Closed loop finite element modeling of piezoelectric smart structures", Shock Vib. 13, 1-12. https://doi.org/10.1155/2006/505419
- Moita, J. M. S., Soares, C. M. M. and Soares, C. A. M. (2005), "Active control of forced vibrations in adaptive structures using a higher order model", Smart Mater. Struct., 71, 349-355.
- Peng, F., Ng, A. and Hu, Y. R. (2005), "Actuator placement optimization and adaptive vibration control of plate smart structures", J. Intell. Mater. Sys. Struct., 16, 263-271. https://doi.org/10.1177/1045389X05050105
- Preumont, A. (2002), Vibration control of active structures an introduction, (2th ed.). Netherlands: Kluwer Academic Publishers.
- Reaves, C. M. and Horta, L. G. (2003), Piezoelectric actuator modeling using MSC/NASTRAN and MATLAB. NASA/TM-2003-212651, Langley Research Center, Hampton, Virginia.
- Raja, S., Prathap, G. and Sihna, P. K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators", Smart Mater. Struct., 11, 63-71. https://doi.org/10.1088/0964-1726/11/1/307
- Seba, B., Ni, J. and Lohmann, B. (2006), "Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis", Smart Mater. Struct., 15, 509-517. https://doi.org/10.1088/0964-1726/15/2/034
- Xu, S. X., Koko, T. S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Finite Elements in Analysis and Design, 40, 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1
-
Yaman, Y., Ulker, F. D., Nalbanto lu, V., Call kan, T., Prasad E., Waechter, D. and Yan, B. (2003), "Application of
${\mu}$ synthesis active vibration control technique to a smart fin", 6th CanSmart Workshop 109-119, Canada. - Yang, S. M., Sheu, G. J. and Liu, K. C. (2005), "Vibration control of composite smart structures by feedforward adaptive filter in digital signal processor", J. Intell. Mater. Sys. Struct., 16, 773-779. https://doi.org/10.1177/1045389X05055877
Cited by
- Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
- Unified solutions for piezoelectric bilayer cantilevers and solution modifications vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.759
- Boundary control of harmonic disturbances on flexible cantilever beams using piezoelectric patch actuators vol.22, pp.18, 2016, https://doi.org/10.1177/1077546314567723
- Multiphysics Modeling and Experimental Validation of the Active Reduction of Structure-Borne Noise vol.132, pp.6, 2010, https://doi.org/10.1115/1.4001844
- Analysis and implementation of MIMO FULMS algorithm for active vibration control vol.34, pp.7, 2012, https://doi.org/10.1177/0142331211415896
- An efficient FE approach for attenuation of acoustic radiation of thin structures by using passive shunted piezoelectric systems vol.128, 2017, https://doi.org/10.1016/j.apacoust.2017.04.013
- Development of a two-degree-of-freedom piezoelectric motor using single plate vibrator vol.226, pp.4, 2012, https://doi.org/10.1177/0954406211417368
- Piezoelectric Multimode Vibration Control for Stiffened Plate Using ADRC-Based Acceleration Compensation vol.61, pp.12, 2014, https://doi.org/10.1109/TIE.2014.2317141
- Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator vol.23, pp.1, 2014, https://doi.org/10.1088/0964-1726/23/1/015006
- DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.327
- Vibration control of a lead zirconate titanate structure considering controller–structure interactions pp.2048-4046, 2018, https://doi.org/10.1177/1461348418795372
- Mathematical modeling of actively controlled piezo smart structures: a review vol.8, pp.3, 2009, https://doi.org/10.12989/sss.2011.8.3.275
- Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2009, https://doi.org/10.12989/sss.2017.20.3.351
- Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205