DOI QR코드

DOI QR Code

Simulation and experimental analysis of active vibration control of smart beams under harmonic excitation

  • Malgaca, L. (Department of Mechanical Engineering, Dokuz Eylul University) ;
  • Karagulle, H. (Department of Mechanical Engineering, Dokuz Eylul University)
  • Received : 2007.05.08
  • Accepted : 2008.07.31
  • Published : 2009.01.25

Abstract

In the present study, active control of a smart beam under forced vibration is analyzed. The aluminum smart beam is composed of two piezoelectric patches and strain gauge. One of the piezoelectric patches is used as controlling actuator while the other piezoelectric patch is used as vibration generating shaker. The smart beam is harmonically excited by the piezoelectric shaker at its fundamental frequency. The strain gauge is utilized to sense the vibration level. Active vibration reduction under harmonic excitation is achieved using both strain and displacement feedback control. Control actions, the finite element (FE) modeling and analyses are directly carried out by using ANSYS parametric design language (APDL). Experimental applications are performed with LabVIEW. Dynamic behavior at the tip of the beam is evaluated for the uncontrolled and controlled responses. The simulation and experimental results are compared. Good agreement is observed between simulation and experimental results under harmonic excitation.

Keywords

Acknowledgement

Supported by : Turkish Scientific and Research Council (TUBITAK)

References

  1. ANSYS (2004), ANSYS user manual, ANSYS, Inc., Canonsburg, PA, USA, (www.ansys.com).
  2. Baillargeon, B. P. and Vel, S. S. (2005), "Active vibration suppression of sandwich beams using shear actuators: experiments and numerical simulations", J. Intell. Mater. Sys. Struct., 16, 517-530. https://doi.org/10.1177/1045389X05053154
  3. Bruant, I., Coffignal, G., Lene, F. ad Verge, M. (2001), "Active control of beam structures with piezoelectric actuators and sensors: modeling and simulation", Smart Mater. Struct., 10, 404-408. https://doi.org/10.1088/0964-1726/10/2/402
  4. Choi, S. B., Park, S. B. and Fukuda, T. (1998), "A proof of concept investigation on active vibration control of hybrid structures", Mechatronics, 8, 673-689. https://doi.org/10.1016/S0957-4158(98)00029-4
  5. Dong, X. J., Meng, G. and Peng, J. C. (2006), "Vibration control of piezoelectric smart structures based on system identification technique: Numerical simulation and experimental study", J. Sound. Vib., 297, 680-693. https://doi.org/10.1016/j.jsv.2006.04.021
  6. Fariborzi, F., Golnaraghi, M. F. and Heppler, G. R. (1997), "Experimental control of free and forced structural vibration using a linear coupling strategy", Smart Mater. Struct., 6, 540-548. https://doi.org/10.1088/0964-1726/6/5/005
  7. Gabbert, U., Trajkov, T. M. and Koppe, H. (2002), "Modelling, control and simulation of piezoelectric smart structures using finite element method and optimal control", Mechanics, Automatic Control and Robotics, 3, 417-430.
  8. Jha, R. and Rower, J. (2002), "Experimental investigation of active vibration control using neural networks and piezoelectric actuators", Smart Mater. Struct. 11, 115-121. https://doi.org/10.1088/0964-1726/11/1/313
  9. Karagulle, H., Malgaca, L. and Oktem, H. F. (2004), "Analysis by active vibration control in smart structures by ANSYS", Smart Mater. Struct., 13, 661-667. https://doi.org/10.1088/0964-1726/13/4/003
  10. Kumar, R. and Singh, S. P. (2006), "Adaptive hybrid control of smart structures subjected to multiple disturbances", Smart Mater. Struct., 15, 1345-1357. https://doi.org/10.1088/0964-1726/15/5/024
  11. Kusculuoglu, Z. K., Fallahi, B. and Roston, T. J. (2004), "Finite element model of a beam with a piezoceramic actuator", J. Sound. Vib., 276, 27-44. https://doi.org/10.1016/j.jsv.2003.07.014
  12. MATLAB (2004), The MathWorks, Inc., United States, www.mathworks.com.
  13. Meng, G., Yeb, L., Dong, X-J. and Wei, K. (2006), "Closed loop finite element modeling of piezoelectric smart structures", Shock Vib. 13, 1-12. https://doi.org/10.1155/2006/505419
  14. Moita, J. M. S., Soares, C. M. M. and Soares, C. A. M. (2005), "Active control of forced vibrations in adaptive structures using a higher order model", Smart Mater. Struct., 71, 349-355.
  15. Peng, F., Ng, A. and Hu, Y. R. (2005), "Actuator placement optimization and adaptive vibration control of plate smart structures", J. Intell. Mater. Sys. Struct., 16, 263-271. https://doi.org/10.1177/1045389X05050105
  16. Preumont, A. (2002), Vibration control of active structures an introduction, (2th ed.). Netherlands: Kluwer Academic Publishers.
  17. Reaves, C. M. and Horta, L. G. (2003), Piezoelectric actuator modeling using MSC/NASTRAN and MATLAB. NASA/TM-2003-212651, Langley Research Center, Hampton, Virginia.
  18. Raja, S., Prathap, G. and Sihna, P. K. (2002), "Active vibration control of composite sandwich beams with piezoelectric extension-bending and shear actuators", Smart Mater. Struct., 11, 63-71. https://doi.org/10.1088/0964-1726/11/1/307
  19. Seba, B., Ni, J. and Lohmann, B. (2006), "Vibration attenuation using a piezoelectric shunt circuit based on finite element method analysis", Smart Mater. Struct., 15, 509-517. https://doi.org/10.1088/0964-1726/15/2/034
  20. Xu, S. X., Koko, T. S. (2004), "Finite element analysis and design of actively controlled piezoelectric smart structures", Finite Elements in Analysis and Design, 40, 241-262. https://doi.org/10.1016/S0168-874X(02)00225-1
  21. Yaman, Y., Ulker, F. D., Nalbanto lu, V., Call kan, T., Prasad E., Waechter, D. and Yan, B. (2003), "Application of ${\mu}$ synthesis active vibration control technique to a smart fin", 6th CanSmart Workshop 109-119, Canada.
  22. Yang, S. M., Sheu, G. J. and Liu, K. C. (2005), "Vibration control of composite smart structures by feedforward adaptive filter in digital signal processor", J. Intell. Mater. Sys. Struct., 16, 773-779. https://doi.org/10.1177/1045389X05055877

Cited by

  1. Active vibration control: considering effect of electric field on coefficients of PZT patches vol.16, pp.6, 2015, https://doi.org/10.12989/sss.2015.16.6.1091
  2. Unified solutions for piezoelectric bilayer cantilevers and solution modifications vol.16, pp.5, 2015, https://doi.org/10.12989/sss.2015.16.5.759
  3. Boundary control of harmonic disturbances on flexible cantilever beams using piezoelectric patch actuators vol.22, pp.18, 2016, https://doi.org/10.1177/1077546314567723
  4. Multiphysics Modeling and Experimental Validation of the Active Reduction of Structure-Borne Noise vol.132, pp.6, 2010, https://doi.org/10.1115/1.4001844
  5. Analysis and implementation of MIMO FULMS algorithm for active vibration control vol.34, pp.7, 2012, https://doi.org/10.1177/0142331211415896
  6. An efficient FE approach for attenuation of acoustic radiation of thin structures by using passive shunted piezoelectric systems vol.128, 2017, https://doi.org/10.1016/j.apacoust.2017.04.013
  7. Development of a two-degree-of-freedom piezoelectric motor using single plate vibrator vol.226, pp.4, 2012, https://doi.org/10.1177/0954406211417368
  8. Piezoelectric Multimode Vibration Control for Stiffened Plate Using ADRC-Based Acceleration Compensation vol.61, pp.12, 2014, https://doi.org/10.1109/TIE.2014.2317141
  9. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator vol.23, pp.1, 2014, https://doi.org/10.1088/0964-1726/23/1/015006
  10. DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.327
  11. Vibration control of a lead zirconate titanate structure considering controller–structure interactions pp.2048-4046, 2018, https://doi.org/10.1177/1461348418795372
  12. Mathematical modeling of actively controlled piezo smart structures: a review vol.8, pp.3, 2009, https://doi.org/10.12989/sss.2011.8.3.275
  13. Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2009, https://doi.org/10.12989/sss.2017.20.3.351
  14. Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205