DOI QR코드

DOI QR Code

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin (Department of Civil Engineering, University of Akron) ;
  • Ogorzalek, Kenneth A. (Department of Civil Engineering, University of Wisconsin-Milwaukee) ;
  • Dyke, Shirley J. (Department of Mechanical, Aerospace and Structural Engineering, Washington University) ;
  • Song, Wei (Department of Mechanical, Aerospace and Structural Engineering, Washington University)
  • 투고 : 2007.10.31
  • 심사 : 2008.09.11
  • 발행 : 2009.01.25

초록

A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.

키워드

참고문헌

  1. Bernal, D. (2002), "Load vectors for damage localization", J. Eng. Mech. ASCE, 128(1), 7-14. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:1(7)
  2. Doebling, S. W., Farrar, C. R. and Prime, M. B. (1998), "A summary review of vibration-based damage identification methods", The Shock Vib. Digest, 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  3. Duan, Z. D., Yan, G. R., Ou, J. P. and Spencer, B. F. (2007), "Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs", Struct. Control. Health Monit., 14(2), 186-196. https://doi.org/10.1002/stc.149
  4. Efroymson, M. A., Multiple Regression Analysis, in Mathematical Methods for Digital Computers. 1960, John Wiley: New York.
  5. Fox, R. L. and Kapoop, M. P. (1968), "Rates of change of eigenvalues and eigenvectors", AIAA J., 6(12), 2426-2429. https://doi.org/10.2514/3.5008
  6. Friswell, M. I. (2007), "Damage identification using inverse methods", Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 365(1851), 393-410. https://doi.org/10.1098/rsta.2006.1930
  7. Friswell, M. I. and Mottershead, J. E. (1995), Finite Element Model Updating in Structural Dynamics. Norwell, MA: Kluwer Academic.
  8. Friswell, M. I., Penny, J. E. T. and Garvey, S. D. (1997), "Parameter subset selection in damage location", Inverse Problems in Eng., 5(3), 189-215. https://doi.org/10.1080/174159797088027660
  9. Friswell, M. I., Penny, J. E. T. and Garvey, S. D. (1998), "A combined genetic and eigensensitivity algorithm for the location of damage in structures", Comput. Struct., 69(5), 547-556. https://doi.org/10.1016/S0045-7949(98)00125-4
  10. Giraldo, D., A Structural Health Monitoring Framework for Civil Structures, in Department of Civil Engineering. 2006, Washington University in St. Louis: St. Louis MO.
  11. Goldberg, D. E. (1989), Genetic Algorithms in Search Optimization and Machine Learning. New York: Addison-Wesley.
  12. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan.
  13. Hu, N., Wang, X., Fukunaga, H., Yao, Z. H., Zhang, H. X. and Wu, Z. S. (2001), "Damage assessment of structures using modal test data", Int. J. Solid. Struct., 38(18), 3111-3126. https://doi.org/10.1016/S0020-7683(00)00292-4
  14. Kim, J. T., Park, J. H., Yoon, H. S. and Yi, J. H. (2007), "Vibration-based damage detection in beams using genetic algorithm", Smart Struct. Syst., 3(3), 263-280. https://doi.org/10.12989/sss.2007.3.3.263
  15. Lallement, G. and Piranda, J. (1990), "Localization methods for parameter updating of finite element models in elastodynamics", 8th International Modal Analysis Conference. Orlando, Florida.
  16. Miller, A. J. (1996), "The convergence of Efroymson's stepwise regression algorithm", American Statistician, 50(2), 180-181.
  17. Moslem, K. and Nafaspour, R. (2002), "Structural damage detection by genetic algorithms", AIAA J., 40(7), 1395-1401. https://doi.org/10.2514/2.1800
  18. Mottershead, J. E. and Friswell, M. I. (1993), "Model Updating in structural dynamics: a survey", J. Sound. Vib., 167(2), 347-375. https://doi.org/10.1006/jsvi.1993.1340
  19. Rao, M. A., Srinivas, J. and Murthy, B. S. N. (2004), "Damage detection in vibrating bodies using genetic algorithms", Comput. Struct., 82(11-12), 963-968. https://doi.org/10.1016/j.compstruc.2004.01.005
  20. Song, W., Dyke, S. J. and Yun, G. J. (2007a), "FE model updating for structural damage localization and quantification in high-dimension SHM problem", The 6th International Workshop on Structural Health Monitoring. Stanford University.
  21. Song, W., Dyke, S. J., Yun, G. J. and Harmon, T. G. (2007b), "Improved damage localization and quantification using subset selection", J. Eng. Mech., ASCE, Submitted in 2007.
  22. Syswerda, G. (1991), "A study of reproduction in generational and steady state genetic algorithms", Proceedings of Foundations of Genetic Algorithms Conference. Morgan Kaufmann.
  23. Teughels, A., Maeck, J. and De Roeck, G. (2002), "Damage assessment by FE model updating using damage functions", Comput. Struct., 80(25), 1869-1879. https://doi.org/10.1016/S0045-7949(02)00217-1
  24. Titurus, B., Friswell, M. I. and Starek, L. (2003), "Damage detection using generic elements: Part II. damage detection", Comput. Struct., 81(24-25), 2287-2299. https://doi.org/10.1016/S0045-7949(03)00318-3
  25. Toksoy, T. and Aktan, A. E. (1994), "Bridge-condition assessment by modal flexibility", Experimental Mech., 34(3), 271-278. https://doi.org/10.1007/BF02319765
  26. Whitley, D. (1989), "The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best", Proceedings Third International Conference of Genetic Algorithm. San Mateo, CA.
  27. Yun, G. J., Ogorzalek, K. A., Dyke, S. J. and Song, W. (2008), "A parameter subset selection method using residual force vector for detecting multiple damage location", Struct. Control. Health Monit., In Press DOI:10.1002/stc.284.

피인용 문헌

  1. Wood and Paper as Materials for the 21st Century vol.1187, 2009, https://doi.org/10.1557/PROC-1187-KK04-06
  2. Inverse Estimations of Dynamic Stiffness of Highway Bridge Embankment from Earthquake Records vol.19, pp.8, 2014, https://doi.org/10.1061/(ASCE)BE.1943-5592.0000463
  3. Enhanced optimization-based structural damage detection method using modal strain energy and modal frequencies 2017, https://doi.org/10.1007/s00366-017-0563-5
  4. Structural damage localization and evaluation based on modal data via a new evolutionary algorithm vol.82, pp.2, 2012, https://doi.org/10.1007/s00419-011-0548-6
  5. Numerical evaluation for vibration-based damage detection in wind turbine tower structure vol.21, pp.6, 2015, https://doi.org/10.12989/was.2015.21.6.657
  6. Chaos-enhanced accelerated particle swarm optimization vol.18, pp.2, 2013, https://doi.org/10.1016/j.cnsns.2012.07.017
  7. A generalized computationally efficient inverse characterization approach combining direct inversion solution initialization with gradient-based optimization vol.59, pp.3, 2017, https://doi.org/10.1007/s00466-016-1362-3
  8. Field Implementation of Wireless Vibration Sensing System for Monitoring of Harbor Caisson Breakwaters vol.8, pp.12, 2012, https://doi.org/10.1155/2012/597546
  9. Remaining stiffness estimation of buildings using incomplete measurements vol.24, pp.4, 2017, https://doi.org/10.1002/stc.1899
  10. Damage prognosis by means of modal residual force and static deflections obtained by modal flexibility based on the diagonalization method vol.22, pp.7, 2013, https://doi.org/10.1088/0964-1726/22/7/075032
  11. A Computational Nondestructive Evaluation Algorithm Combining Self-Evolving Parameterization and Multi-Objective Optimization for Quantitative Damage Characterization vol.33, pp.4, 2014, https://doi.org/10.1007/s10921-014-0251-y
  12. Modal parameters based structural damage detection using artificial neural networks - a review vol.14, pp.2, 2014, https://doi.org/10.12989/sss.2014.14.2.159
  13. Structural identification of gravity-type caisson structure via vibration feature analysis vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.259
  14. Vibration Characteristics of Gravity-Type Caisson Breakwater Structure with Water-Level Variation vol.9, pp.11, 2013, https://doi.org/10.1155/2013/261396
  15. Cyber-Physical Codesign of Distributed Structural Health Monitoring with Wireless Sensor Networks vol.25, pp.1, 2014, https://doi.org/10.1109/TPDS.2013.30
  16. Damage detection of framed structures subjected to earthquake excitation using discrete wavelet analysis vol.15, pp.1, 2017, https://doi.org/10.1007/s10518-016-9962-z
  17. Self-healing polymers and composites vol.55, pp.6, 2010, https://doi.org/10.1179/095066010X12646898728408
  18. A novel evolutionary algorithm for identifying multiple alternative solutions in model updating vol.10, pp.5, 2011, https://doi.org/10.1177/1475921710381775
  19. A new method to detect cracks in plate-like structures with though-thickness cracks vol.14, pp.3, 2014, https://doi.org/10.12989/sss.2014.14.3.397
  20. Wavelet analysis based damage localization in steel frames with bolted connections vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1189
  21. Effects of foundation damage and water-level change on vibration modal parameters of gravity-type caisson structure vol.58, pp.2, 2015, https://doi.org/10.1007/s11431-014-5748-1
  22. Delamination identification of laminated composite plates using a continuum damage mechanics model and subset selection technique vol.19, pp.5, 2010, https://doi.org/10.1088/0964-1726/19/5/055024
  23. Parameter estimation of a rate-dependent damage constitutive model for damage-tolerant brittle composites by Self-OPTIM analyses vol.22, pp.5, 2013, https://doi.org/10.1177/1056789512464634
  24. A multi-resolution analysis based finite element model updating method for damage identification vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.047
  25. Finite Element Model Updating of a PSC Box Girder Bridge Using Ambient Vibration Test vol.168-170, pp.1662-8985, 2010, https://doi.org/10.4028/www.scientific.net/AMR.168-170.2263
  26. Ionic Polymer Transducers in sensing: the streaming potential hypothesis vol.6, pp.3, 2010, https://doi.org/10.12989/sss.2010.6.3.211
  27. Image recognition technology in rotating machinery fault diagnosis based on artificial immune vol.6, pp.4, 2010, https://doi.org/10.12989/sss.2010.6.4.389
  28. Damage detection in plates based on pattern search and Genetic algorithms vol.7, pp.2, 2009, https://doi.org/10.12989/sss.2011.7.2.117
  29. Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface vol.10, pp.6, 2009, https://doi.org/10.12989/sss.2012.10.6.517
  30. A simple method to detect cracks in beam-like structures vol.9, pp.4, 2009, https://doi.org/10.12989/sss.2012.9.4.335
  31. Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method vol.45, pp.4, 2009, https://doi.org/10.12989/sem.2013.45.4.471
  32. Truss structure damage identification using residual force vector and genetic algorithm vol.25, pp.4, 2009, https://doi.org/10.12989/scs.2017.25.4.485
  33. A damage localization method based on the singular value decomposition (SVD) for plates vol.22, pp.5, 2018, https://doi.org/10.12989/sss.2018.22.5.621
  34. Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates vol.72, pp.1, 2019, https://doi.org/10.12989/sem.2019.72.1.113
  35. Remaining capacity estimation for buildings after an explosion using the adaptive alternate path analysis vol.23, pp.4, 2009, https://doi.org/10.1177/1369433219876212
  36. A fast damage detecting technique for indeterminate trusses vol.75, pp.5, 2009, https://doi.org/10.12989/sem.2020.75.5.585