References
- Artan, R. and Tepe, A. (2008), "The initial values method for buckling of nonlocal bars with application in nanotechnology", Eur. J. Mech. A - Solid, 27, 469-477. https://doi.org/10.1016/j.euromechsol.2007.09.004
- Aydogdu, M. (2008), "Vibration of multiwalled carbon nanotubes by generalized shear deformation theory", Int. J. Mech. Sci., 50, 837-844. https://doi.org/10.1016/j.ijmecsci.2007.10.003
- Aydogdu, M. (2009), "Axial vibration of nanorods with the nonlocal continuum rod model", Physica E, 41, 861-864. https://doi.org/10.1016/j.physe.2009.01.007
- Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, (in press), Available online.
- Ball, P. (2001), "Roll up for the revolution", Nature (London), 414, 142-144. https://doi.org/10.1038/35102721
- Baughman, R.H., Zakhidov, A.A. and de Heer, W.A. (2002), "Carbon Nanotubes - The route toward applications", Science, 297, 787-792. https://doi.org/10.1126/science.1060928
- Bellman, R.E., Kashef, B.G. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10, 40. https://doi.org/10.1016/0021-9991(72)90089-7
- Bert, C.W. and Malik, M. (1996), "Differential quadrature in computational mechanics: A review", Appl. Mech. Rev., 49, 1-27. https://doi.org/10.1115/1.3101882
- Bert, C.W., Jang, S.K. and Striz, A.G. (1988), "Two new approximate methods for analyzing free vibration of structural components", AIAA J., 26, 612-618. https://doi.org/10.2514/3.9941
- Bodily, B.H. and Sun, C.T. (2003), "Structural and equivalent continuum properties of single-walled carbon nanotubes", J. Mater. Product Tech., 18(4/5/6), 381-397. https://doi.org/10.1504/IJMPT.2003.002498
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phy., 54, 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag NewYork
- Gibson, R.F., Ayorinde, O.E. and Yuan-Feng Wen (2007), "Vibration of carbon nanotubes and there composites: A review", Compos. Sci. Tech., 67, 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58. https://doi.org/10.1038/354056a0
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40, 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8
- Li, C. and Chou, T.W. (2003), "Single-walled nanotubes as ultrahigh frequency nanomechanical oscillators", Phys. Rev. B, 68, art no: 073405.
- Lu, P., Lee, H.P., Lu, C. and Zhang, P.Q. (2007), "Application of nonlocal beam models for carbon nanotubes", Int. J. Solids Struct., 44, 5289-5300. https://doi.org/10.1016/j.ijsolstr.2006.12.034
- Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41, 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
- Pradhan, S.C. and Murmu, T. (2009), "Small scale effect on vibration analysis of single-walled carbon nanotubes embedded in an elastic medium using nonlocal elasticity theory", J. Appl. Phys., 105, 124306.
- Pradhan, S.C. and Sarkar, A. (2009), "Analyses of tapered fgm beams with nonlocal theory", Struct. Eng. Mech., (in press).
- Reddy, J.N. (2007), "Nonlocal theories for bending buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Rothemund Paul, W.K., Ekani-nkodo, A.P., Nick Kumar, Ashish Fygenson, Deborah Kuchnir and Winfree Erik (2004), "Design and characterization of programmable DNA nanotubes", J. Am. Soc., 126, 16344-16352. https://doi.org/10.1021/ja044319l
- Ru, C.Q. (2000), "Column buckling of multiwalled carbon nanotubes with interlayer radial displacements", Phys. Rev. B, 62, 16962-16967. https://doi.org/10.1103/PhysRevB.62.16962
- Seeman, N.C. (1999), "DNA engineering and its application to nanotechnology", Trends Biotechnol., 17(11), 437-43. https://doi.org/10.1016/S0167-7799(99)01360-8
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer Berlin.
- Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in science and technology of carbon nanotubes and there composites: a review", Compos. Sci. Tech., 61, 1899-1912. https://doi.org/10.1016/S0266-3538(01)00094-X
- Wang, L. and Hu, H.Y. (2005), "Flexural wave propagation in single-walled carbon nanotube", Phys. Rev. B, 71, 195412.
- Wang, C.M., Tan, V.B.C. and Zhang, Y.Y. (2006), "Timoshenko Beam model for vibration analysis of multiwalled carbon nanotubes", J. Sound Vib., 294, 1060-1072. https://doi.org/10.1016/j.jsv.2006.01.005
- Wang, Q. and Varadan, V.K. (2006), "Vibration of Carbon Nanotubes studied using nonlocal continuum mechanics", Smart Mater. Struct., 15, 659-666. https://doi.org/10.1088/0964-1726/15/2/050
- Wang, Q. and Vardan, V.K. (2005), "Wave characteristics of carbon nanotubes international", Int. J. Solids Struct., 43, 254-265.
- Wang, Q., Varadan, V.K. and Quekc, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phy. Letters A, 357, 130-135. https://doi.org/10.1016/j.physleta.2006.04.026
- Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18, 075702. https://doi.org/10.1088/0957-4484/18/7/075702
- Wang, Q., Zhou, G.Y. and Lin, K.C. (2006), "Scale effect on wave propagation of double walled carbon nanotubes", Int. J. Solids Struct., 43, 6071-6084. https://doi.org/10.1016/j.ijsolstr.2005.11.005
- Yang, B. (2005), Stress Strain and Structural Dynamics, Elsevier Science and Technology Publishers.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003), "A vibration of embedded multiwall carbon nanotubes", Compos. Sci. Tech., 63, 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2002), "A non-coaxial resonance of an isolated multiwall carbon nanotube", Phys. Rev. B, 66, art no: 233402.
Cited by
- Thermo mechanical buckling analysis of carbon nanotubes on winkler foundation using non-local elasticity theory and DTM vol.36, pp.6, 2011, https://doi.org/10.1007/s12046-011-0052-2
- Bending, buckling and free vibration analysis of Euler-Bernoulli nanobeams using Eringen’s nonlocal integral model via finite element method vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.019
- Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates vol.49, pp.3, 2010, https://doi.org/10.1016/j.commatsci.2010.05.040
- Nonlocal frequency analysis of embedded single-walled carbon nanotube using the Differential Quadrature Method vol.84, 2016, https://doi.org/10.1016/j.compositesb.2015.08.065
- Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.691
- Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM vol.50, pp.3, 2011, https://doi.org/10.1016/j.commatsci.2010.11.001
- Mechanical Buckling Analysis of Single-Walled Carbon Nanotube with Nonlocal Effects vol.48, 2017, https://doi.org/10.4028/www.scientific.net/JNanoR.48.85
- Variational solution for buckling of nonlocal carbon nanotubes under uniformly and triangularly distributed axial loads vol.156, 2016, https://doi.org/10.1016/j.compstruct.2016.01.026
- Surface Elasticity Effects Can Apparently Be Explained Via Their Nonconservativeness vol.2, pp.3, 2011, https://doi.org/10.1115/1.4005486
- Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia vol.219, pp.3, 2012, https://doi.org/10.1016/j.amc.2012.07.032
- Torsional vibrations of restrained nanotubes using modified couple stress theory 2018, https://doi.org/10.1007/s00542-018-3735-3
- Numerical solution for dynamic analysis of semicircular curved beams acted upon by moving loads vol.228, pp.13, 2014, https://doi.org/10.1177/0954406213518908
- Nonlocal frequency analysis of nanosensors with different boundary conditions and attached distributed biomolecules: an approximate method vol.227, pp.8, 2016, https://doi.org/10.1007/s00707-016-1631-4
- Bending, buckling and vibration problems of nonlocal Euler beams using Ritz method vol.96, 2013, https://doi.org/10.1016/j.compstruct.2012.08.024
- Mathematical solution for free vibration of sigmoid functionally graded beams with varying cross-section vol.11, pp.6, 2011, https://doi.org/10.12989/scs.2011.11.6.489
- Analysis of radial nonlocal effect on the structural response of carbon nanotubes vol.377, pp.34-36, 2013, https://doi.org/10.1016/j.physleta.2013.06.018
- Exact solution of Eringen's nonlocal integral model for vibration and buckling of Euler–Bernoulli beam vol.107, 2016, https://doi.org/10.1016/j.ijengsci.2016.07.004
- Semi-analytical solution for free transverse vibrations of Euler–Bernoulli nanobeams with manifold concentrated masses vol.24, pp.9, 2017, https://doi.org/10.1080/15376494.2016.1196778
- Buckling analysis and small scale effect of biaxially compressed graphene sheets using non-local elasticity theory vol.37, pp.4, 2012, https://doi.org/10.1007/s12046-012-0088-y
- Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect vol.53, 2013, https://doi.org/10.1016/j.physe.2013.04.029
- Nonlocal integral elasticity analysis of beam bending by using finite element method vol.54, pp.4, 2015, https://doi.org/10.12989/sem.2015.54.4.755
- Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory vol.103, 2016, https://doi.org/10.1016/j.ijengsci.2016.03.001
- Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity vol.49, pp.3, 2010, https://doi.org/10.1016/j.commatsci.2010.06.003
- Computational vibration and buckling analysis of microtubule bundles based on nonlocal strain gradient theory vol.321, 2018, https://doi.org/10.1016/j.amc.2017.10.050
- Free Vibration Analysis of DWCNTs Using CDM and Rayleigh-Schmidt Based on Nonlocal Euler-Bernoulli Beam Theory vol.2014, 2014, https://doi.org/10.1155/2014/194529
- Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams vol.106, 2016, https://doi.org/10.1016/j.ijengsci.2016.05.005
- Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory vol.11, pp.1, 2011, https://doi.org/10.12989/scs.2011.11.1.059
- Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory vol.38, pp.3, 2014, https://doi.org/10.1016/j.apm.2013.08.011
- Exact solutions of bending deflections for nano-beams and nano-plates based on nonlocal elasticity theory vol.125, 2015, https://doi.org/10.1016/j.compstruct.2015.02.017
- On the torsional vibrations of restrained nanotubes embedded in an elastic medium vol.40, pp.9, 2018, https://doi.org/10.1007/s40430-018-1346-7
- An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach vol.24, pp.11, 2018, https://doi.org/10.1177/1077546316684042
- Dynamic modeling of embedded curved nanobeams incorporating surface effects vol.5, pp.3, 2009, https://doi.org/10.12989/csm.2016.5.3.255
- Instability analysis of viscoelastic CNTs surrounded by a thermo-elastic foundation vol.63, pp.2, 2017, https://doi.org/10.12989/sem.2017.63.2.171
- Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory vol.26, pp.6, 2009, https://doi.org/10.12989/scs.2018.26.6.663
- The critical buckling load of reinforced nanocomposite porous plates vol.67, pp.2, 2009, https://doi.org/10.12989/sem.2018.67.2.115
- Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix vol.67, pp.5, 2009, https://doi.org/10.12989/sem.2018.67.5.517
- Critical buckling loads of carbon nanotube embedded in Kerr's medium vol.6, pp.4, 2009, https://doi.org/10.12989/anr.2018.6.4.339
- Nonlinear Analysis for Bending, Buckling and Post-buckling of Nano-Beams with Nonlocal and Surface Energy Effects vol.19, pp.11, 2009, https://doi.org/10.1142/s021945541950130x
- Buckling Analysis of a Bi-Directional Strain-Gradient Euler-Bernoulli Nano-Beams vol.20, pp.11, 2020, https://doi.org/10.1142/s021945542050114x
- Longitudinal vibration of double nanorod systems using doublet mechanics theory vol.73, pp.1, 2009, https://doi.org/10.12989/sem.2020.73.1.037
- Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle vol.73, pp.2, 2009, https://doi.org/10.12989/sem.2020.73.2.209
- Variational method for non-conservative instability of a cantilever SWCNT in the presence of variable mass or crack vol.91, pp.1, 2009, https://doi.org/10.1007/s00419-020-01770-8
- Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels vol.38, pp.2, 2021, https://doi.org/10.12989/scs.2021.38.2.189
- Closed-form expressions for bending and buckling of functionally graded nanobeams by the Laplace transform vol.10, pp.2, 2009, https://doi.org/10.1142/s2047684121500123