References
- Belarbi, A., Suriya Prakash, S. and Silva, P. (2008a), "Flexure-shear-torsion Interaction of RC bridge columns", Proc. of the Concrete Bridge Conference, St. Louis, USA, Paper No. 6.
- Belarbi, A., Suriya Prakash, S. and Ayoub, A. (2008b), "An experimental study on behavior of RC bridge columns under combined cyclic bending and torsion", Proc. of the Concrete Bridge Conference, St. Louis, USA, Paper No. 5.
- Elwood, K.J. and Moehle, J.P. (2005), "Drift capacity of reinforced concrete columns with light transverse reinforcement", Earthq. Spectra, 21(1), 71-89. https://doi.org/10.1193/1.1849774
- Hindi, R., Al-Qattawi, M. and Elsharief, A. (2005), "Influence of different confinement patterns on the axial behavior of R/C columns", Structures Congress, ASCE, New York, USA.
- Hsu, H.L. and Wang, C.L. (2000), "Flexural-torsional behavior of steel reinforced concrete members subjected to repeated loading", Earthq. Eng. Struct. Dyn., 29, 667-682. https://doi.org/10.1002/(SICI)1096-9845(200005)29:5<667::AID-EQE930>3.0.CO;2-Y
- Lehman, D.E., Calderone, A.J. and Moehle, J.P. (1998), "Behavior and design of slender columns subjected to lateral loading", Proc. of the Sixth U.S. National Conference on Earthquake Engineering, EERI, Oakland, California, May 31-June 4, Paper No. 87.
- Mo, Y.L. and Hsu, T.T.C. (1985), "Softening of concrete in torsional members- design recommendations", ACI Struct. J., 82(37), 443-452.
- Mostafaei, H. and Kabeyasawa, T. (2007), "Axial-shear-flexure interaction approach for reinforced concrete columns", ACI Struct. J., 104(2), 218-226.
- Otsuka, H., Takeshita, E., Yabuki, W., Wang, Y., Yoshimura, T. and Tsunomoto, M. (2004), "Study on the seismic performance of reinforced concrete columns subjected to torsional moment, bending moment and axial force", Proc. of the 13th World Conf. on Earthquake Engineering, Vancouver, Canada, Paper No. 393.
- Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., ASCE, 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
- Priestly, M.J.N. and Benzoni, G. (1996), "Seismic performance of circular columns with low longitudinal reinforcement ratios", ACI Struct. J., 93(4), 474-485.
- Priestly, M.J.N., Seible, F. and Calvi, G.M. (1996), Seismic Design and Retrofit of Bridges, John Wiley and Sons, Inc., New York.
- Selby, R.G. and Vecchio, F.J. (1993), "Three-dimensional constitutive relations for reinforced concrete", University of Toronto, Toronto, Canada. Tech. Report No. 93-02.
- Suriya Prakash, S., Belarbi, A. and Ayoub, A. (2008), "Cyclic behavior of RC bridge columns under combined loadings including torsion", Sixth Seismic National Conference on Highways and Bridges, July 27-30, Charleston, South Carolina, USA.
- Suriya Prakash, S. and Belarbi, A. (2009), "Towards damage-based design approach for RC bridge columns under combined loadings using damage index models", J. Earthq. Eng. (in press).
- Thorenfeldt, E., Tomaszewicz, A. and Jensen, J.J. (1987), "Mechanical properties of high-strength concrete and applications in design", Proc. of Symp. Utilization of High-Strength Concrete, Tapir, Trondheim, Stavanger, Norway, 149-159.
- Tirasit, P. and Kawashima, K. (2007), "Seismic performance of square reinforced concrete columns under combined cyclic flexural and torsional loadings", J. Earthq. Eng., 11, 425-452. https://doi.org/10.1080/13632460601031813
- Tirasit, P. and Kawashima, K. (2008), "Effect of nonlinear torsion on the performance of skewed bridge piers", J. Earthq. Eng., 12, 980-998. https://doi.org/10.1080/13632460701673019
- Vecchio, F.J. and Collins, M.P. (1993), "Compression response of cracked reinforced concrete", J. Struct. Eng., ASCE, 119(12), 3590-3610. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:12(3590)
Cited by
- Concurrent flexural strength and deformability design of high-performance concrete beams vol.40, pp.4, 2011, https://doi.org/10.12989/sem.2011.40.4.541
- Numerical and hybrid analysis of a curved bridge and methods of numerical model calibration vol.70, 2014, https://doi.org/10.1016/j.engstruct.2014.04.009
- Experimental investigation of reinforced concrete beams with spiral reinforcement in shear vol.125, 2016, https://doi.org/10.1016/j.conbuildmat.2016.08.070
- Influence of Torsion Effect on the Mechanical Characteristics of Reinforced Concrete Column vol.269, 2017, https://doi.org/10.1088/1757-899X/269/1/012036
- Strength design criterion for asymmetrically reinforced RC circular cross-sections in bending vol.11, pp.6, 2013, https://doi.org/10.12989/cac.2013.11.6.571
- Ultimate torsional behaviour of axially restrained RC beams vol.16, pp.1, 2015, https://doi.org/10.12989/cac.2015.16.1.067
- Concrete-encased CFST columns under combined compression and torsion: Experimental investigation vol.138, 2017, https://doi.org/10.1016/j.jcsr.2017.08.016
- Parametric analysis and torsion design charts for axially restrained RC beams vol.55, pp.1, 2015, https://doi.org/10.12989/sem.2015.55.1.001
- Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections vol.7, pp.4, 2014, https://doi.org/10.12989/eas.2014.7.4.463
- Seismic performance of circular RC bridge columns with flexure–torsion interaction vol.66, 2014, https://doi.org/10.1016/j.soildyn.2014.06.028
- Normalised rotation capacity for deformability evaluation of high-performance concrete beams vol.1, pp.3, 2010, https://doi.org/10.12989/eas.2010.1.3.269
- Experimental investigation of RC beams with rectangular spiral reinforcement in torsion vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.05.003
- Seismic behavior of strengthened square reinforced concrete columns under combined loadings vol.15, pp.11, 2009, https://doi.org/10.1080/15732479.2019.1625415
- Experimental investigations on seismic responses of RC circular column piers in curved bridges vol.17, pp.5, 2009, https://doi.org/10.12989/eas.2019.17.5.435
- Shear resistance analytical evaluation for RC beams with transverse reinforcement with two different inclinations vol.53, pp.1, 2009, https://doi.org/10.1617/s11527-020-1452-8
- Seismic behavior of steel reinforced concrete column with welded studs subjected to combined action of compression-bending-shear-torsion vol.252, pp.None, 2009, https://doi.org/10.1016/j.engstruct.2021.113727