DOI QR코드

DOI QR Code

Transient soil-structure interaction with consistent description of radiation damping

  • Zulkifli, Ediansjah (Lehrstuhl Dynamik der Tragwerke, Fakultat Bauingenieurwesen, Technische Universitat Dresden) ;
  • Ruge, Peter (Lehrstuhl Dynamik der Tragwerke, Fakultat Bauingenieurwesen, Technische Universitat Dresden)
  • Received : 2008.09.04
  • Accepted : 2009.07.15
  • Published : 2009.09.10

Abstract

Radiation damping due to wave propagation in unbounded domains may cause a significant reduction of structural vibrations when excited near resonance. Here a novel matrix-valued algebraic Pad$\acute{e}$-like stiffness formulation in the frequency-domain and a corresponding state equation in the time domain are elaborated for a soil-structure interaction problem with a layered soil excited in a transient manner by a flexible rotor during startup and shutdown. The contribution of radiation damping caused by a soil-layer upon a rigid bedrock is characterized by the corresponding amount of critical damping as it is used in structural dynamics.

Keywords

References

  1. Ahmad, S. and Banerjee, P.K. (1988), Multi-domain BEM for two-dimensional problems of elastodynamics", Int. J. Numer. Meth. Eng., 26(4), 891-911. http://dx.doi.org/10.1002/nme.1620260410 - [Online; last accessed 30- December-2007].
  2. Andersen, L. and Jones, C. (2001), "Three-dimensional elastodynamic analysis using multiple boundary element domains", ISVR Technical Memorandum 867, University of Southampton; Institute Of Sound And Vibration Research, Dynamics Group. http://www.isvr.soton.ac.uk/STAFF/Pubs/Pubpdfs/Pub1370.pdf - [Online; last accessed 30-December-2007].
  3. Antes, H. and Spyrakos, C. (1996), "Soil-structure interaction", In Beskos, D. and Anagnostopoulos, S., editors, Computer Analysis and Design of Earthquake Resistant Structures. A Handbook, 271-332. Computational Mechanics Publications, Southampton, UK, Boston, USA.
  4. Bausinger, R. and Kuhn, G. (1987), Die Boundary-Element-Methode. Expert Verlag, Stutgart.
  5. Beskos, D.E. (1987), "Boundary element method in dynamic analysis", Appl. Mech. Rev., 40(1), 1-23. https://doi.org/10.1115/1.3149529
  6. Cook, R.D., Malkus, D.S. and Plesha, M.E. (1989), Concepts and Applications of Finite Element Analysis. John Wiley & Sons, Inc., New York.
  7. Gasch, R., Nordmann, R. and Pfutzner, H. (2002), Rotordynamik. Springer-Verlag, New York Berlin Heidel-berg, second edition.
  8. Genta, G. (1995), Vibration of Structures and Machines - Parctical Aspects, 238-252. Springer-Verlag, New York Berlin Heidelberg, second edition.
  9. Hartmann, F. (1981), "The Somigliana identity on piecewise smooth surfaces", J. Elast., 11(4), 403-423. http:// www.springerlink.com/content/t21m45604rh81831 [Online; last accessed 11-November-2007]. https://doi.org/10.1007/BF00058082
  10. Li, H., Han, G. and Mang, H.A. (1985), "A new method for evaluating singular integrals in stress analysis of solids by the direct boundary element method", Int. J. Numer. Meth. Eng., 21(11), 2071-2098. http:// dx.doi.org/10.1002/nme.1620211109 - [Online; last accessed 30-December-2007].
  11. Lund, J.W. and Thomsen, K.K. (1978), "A calculation method and data for the dynamic coefficients of oillubricated journal bearings", In Topics in Fluid Film Bearing and Rotor Bearing System Design and Optimization, The Design Engineering Conference, 1-28, Chicago, IL. ASME.
  12. Ruge, P. and Trinks, C. (2002), "Consistent time-domain models for unbounded space-domains", In Fifth World Conference on Computational Mechanics, Vienna, Austria.
  13. Ruge, P. and Trinks, C. (2003), "Representation of radiation damping by fractional time derivatives", Earthq. Eng. Struct. Dyn., 32(7), 1099-1116. http://dx.doi.org/10.1002/eqe.264 - [Online; last accessed 30-December-2007].
  14. Ruge, P., Trinks, C. and Witte, S. (2001), "Time-domain analysis of unbounded media using mixed-variable formulations", Earthq. Eng. Struct. Dyn., 30(6), 899-925. http://dx.doi.org/10.1002/eqe.47 - [Online; last accessed 30-December-2007].
  15. Ruge, P., Zulkifli, E. and Birk, C. (2006), "Symmetric matrix-valu frequency to time transformation for unbounded domains applied to infinite beams", Comput. Struct., 84(28), 1815-1826. http:// www.sciencedirect.com/science/article/B6V28-4KST3DK-1/2/19ffe521dcbc912e3bcf945f93199fdf - [On-line; last accessed 29-December-2007]. https://doi.org/10.1016/j.compstruc.2006.04.006
  16. Suarez, L., Singh, M.P. and Rohanimanesh, M.S. (1992), "Seismic response of rotating machines", Earthq. Eng. Struct. Dyn., 21(1), 21-36. http://dx.doi.org/10.1002/eqe.4290210102.
  17. Trinks, C. (2005), Consistent Absorbing Boundaries for Time-domain Interaction Analyses Using the Fractional Calculus. Dissertation, Technische Universitat Dresden, Mommsenstr. 13 D-01062 Dresden-Germany.
  18. Trinks, C. and Ruge, P. (2002a), "Description of wave propagation by fading memory", In Grundmann, H. and Schuëller, G. I., editors, Structural Dynamics - Eurodyn 2002, 711-716, Munich. Swets & Zeitlinger B.V.
  19. Trinks, C. and Ruge, P. (2002b), "Treatment of dynamic systems with fractional derivatives without evaluating memory-integrals", Comput. Mech., 29(6), 471-476. http://dx.doi.org/10.1007/s00466-002-0356-5 - [Online; last accessed 30-December-2007].
  20. Trinks, C. and Ruge, P. (2003a), "Dynamic dam-reservoir-interaction - treatment of radiation damping by the mixed-variables technique", Proc. Appl. Math. Mech., 3(1), 316-317. http://dx.doi.org/10.1002/pamm.200310430 - [Online; last accessed 30-December-2007].
  21. Trinks, C. and Ruge, P. (2003b), "Fractional calculus applied to radiation damping", Proc. Appl. Math. Mech., 2(1), 266-267. http://dx.doi.org/10.1002/pamm.200310118 - [Online; last accessed 30-December-2007].
  22. Trinks, C., Ruge, P. and Witte, S. (2001a), "Rational approximation of dynamic stiffness matrices for time- domain analysis of unbounded media", Proc. Appl. Math. Mech., 1(1), 234-235. http://dx.doi.org/10.1002/1617-7061(200203)1:1<234::AID-PAMM234>3.0.CO;2-J - [Online; last accessed 30-December-2007].
  23. Trinks, C., Ruge, P. and Witte, S. (2001b), "Time-domain analysis of unbounded media using rational approximation", In Lin, S., Mao, R., Shen, H., Sun, G. and Sun, Y., editor, EPMESC VIII - International Conference on Enhancement and Promotion of Computational Methods in Engineering and Science, Shanghai. San Lian Publisher.
  24. Vaish, A.K. and Chopra, A.K. (1974), "Earthquake finite element analysis of structure-foundation systems", J. Eng. Mech. Div., 100(6), 1101-1116.
  25. Wolf, J.P. (1991), "Consistent lumped-parmeter models for unbounded soil: physical representation", Earthq. Eng. Struct. Dyn., 20(1), 11-32. http://dx.doi.org/10.1002/eqe.4290200103 - [Online; last accessed 30- December-2007].
  26. Wolf, J.P. (1994), Foundation Vibration Analysis Using Simple Physical Model. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  27. Zulkifli, E. (2008), Consistent Description of Radiation Damping in Transient Soil-structure Interaction. Dissertation, Technische Universität Dresden, Mommsenstr. 13 D-01062 Dresden-Germany. email: Ediansjah.Zulkifli@tu-dresden.de.

Cited by

  1. Transient analysis of wave propagation in layered soil by using the scaled boundary finite element method vol.63, 2015, https://doi.org/10.1016/j.compgeo.2014.08.008
  2. A study on the topographical and geotechnical effects in 2-D soil-structure interaction analysis under ground motion vol.40, pp.6, 2011, https://doi.org/10.12989/sem.2011.40.6.829
  3. Dynamic Response of 3D Surface/Embedded Rigid Foundations of Arbitrary Shapes on Multi-Layered Soils in Time Domain vol.19, pp.9, 2019, https://doi.org/10.1142/s0219455419501062